Pyrogenicity — Principles and methods for pyrogen testing of medical devices

This document specifies the principles and methods for pyrogen testing of medical devices and their materials.

Pyrogénicité — Principes et méthodes d'essai pour la recherche des pyrogènes sur les dispositifs médicaux

Le présent document spécifie les principes et méthodes applicables aux essais de pyrogénicité des dispositifs médicaux et des matériaux entrant dans leur composition.

General Information

Status
Published
Publication Date
11-Jul-2021
Current Stage
9092 - International Standard to be revised
Start Date
29-Oct-2024
Completion Date
13-Dec-2025
Ref Project
Technical report
ISO/TR 21582:2021 - Pyrogenicity — Principles and methods for pyrogen testing of medical devices Released:7/12/2021
English language
16 pages
sale 15% off
Preview
sale 15% off
Preview
Technical report
ISO/TR 21582:2021 - Pyrogénicité — Principes et méthodes d'essai pour la recherche des pyrogènes sur les dispositifs médicaux Released:11/12/2021
French language
17 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


TECHNICAL ISO/TR
REPORT 21582
First edition
2021-07
Pyrogenicity — Principles and
methods for pyrogen testing of
medical devices
Reference number
©
ISO 2021
© ISO 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2021 – All rights reserved

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Abbreviated terms . 2
5 Characterization of pyrogen . 3
5.1 General . 3
5.2 Bacterial endotoxin . 3
5.3 Microbial components other than endotoxin . 4
5.4 Pro-inflammatory cytokines . 4
5.5 Chemical agents and other pyrogens . 4
5.6 Principle of febrile reaction . 5
6 Assessment of p yrogenicity. 5
6.1 General . 5
6.2 Bacterial endotoxin test (BET) . 6
6.2.1 General. 6
6.2.2 Principle of LAL reaction . 6
6.2.3 General procedure of BET . 6
6.2.4 Properties of the BET . 6
6.3 Rabbit pyrogen test . 7
6.3.1 General. 7
6.3.2 Principle of the rabbit test . 7
6.3.3 Procedure of the rabbit test. 7
6.3.4 Characteristic of the rabbit test. 8
6.4 Human cell-based pyrogen test (HCPT) . 8
6.4.1 General. 8
6.4.2 Principle of the HCPT . 8
6.4.3 Selection of human cells . 8
6.4.4 Selection of marker cytokine . 9
6.4.5 Procedure of HCPT . 9
6.4.6 Characteristic of the HCPT .10
6.4.7 Validation study .11
7 Conclusion .11
Bibliography .12
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 194, Biological and clinical evaluation of
medical devices.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2021 – All rights reserved

Introduction
At present, safety assessments of medical devices are guided by the toxicological and other studies
recommended in the ISO 10993 series of standards.
Material-mediated pyrogenicity represents a systemic effect that is included in of ISO 10993-11:2017,
Annex G, but efforts have been taken to generally address pyrogenicity testing in this document.
A pyrogenic response is the adverse effect of a chemical agent or other substance, such as microbial
component to produce a febrile response. Tests for a pyrogenic response have been required to evaluate
the safety of products that have direct or indirect contact to blood circulation and the lymphatic system,
cerebrospinal fluid (CSF) and interact systemically with human body.
At present, the in vivo rabbit pyrogenicity test and the in vitro bacterial endotoxin test are available
as accepted methods for evaluating the pyrogenicity of medical devices and their materials. Basic
procedures, including sample preparation of each test article, are already established, internationally
harmonized, and mentioned in the related guidelines and pharmacopoeias.
Recently, an in vitro pyrogen test using human immune cells, the human cell-based pyrogen test (HCPT),
has been developed and applied for pyrogen testing of parenteral drugs. The concept of the application
of pyrogen testing for medical devices is being considered due to the direct or indirect exposure to
human blood cells (HCPT).
TECHNICAL REPORT ISO/TR 21582:2021(E)
Pyrogenicity — Principles and methods for pyrogen testing
of medical devices
1 Scope
This document specifies the principles and methods for pyrogen testing of medical devices and their
materials.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at https:// www .electropedia .org/
— ISO Online browsing platform: available at https:// www .iso .org/ obp
3.1
medical device
instrument, apparatus, implement, machine, appliance, implant, in vitro reagent or calibrator, software,
material or other similar or related article, intended by the manufacturer to be used, alone or in
combination, for human beings for one or more of the specific purpose(s) of
— diagnosis, prevention, monitoring, treatment or alleviation of disease;
— diagnosis, monitoring, treatment, alleviation of or compensation for an injury;
— investigation, replacement, modification, or support of the anatomy or of a physiological process;
— supporting or sustaining life;
— control of conception;
— disinfection of medical devices;
— providing information by means of in vitro examination of specimens derived from the human body;
and does not achieve its primary intended action by pharmacological, immunological or metabolic
means, in or on the human body, but which may be assisted in its function by such means.
Note 1 to entry: Products which may be considered to be medical devices in some jurisdictions but not in others
include:
— disinfection substances;
— aids for persons with disabilities;
— devices incorporating animal and/or human tissues;
— devices for in vitro fertilization or assisted reproduction technologies.
[SOURCE: GHTF/SG1/N071: 2012, 5.1]
3.2
pyrogen
substance that causes fever
3.3
pyrogenicity
ability of a chemical agent or other substance to produce a febrile response
3.4
febrile response
temperature above the normal range due to an increase in the body’s temperature set point
Note 1 to entry: It is also referred to as fever or pyrexia.
3.5
oxidative phosphorylation
metabolic pathway in most aerobic organisms, which uses enzymes to oxidise nutrients to release
energy
4 Abbreviated terms
COX Enzyme cyclooxygenase
CpG Cytosine (C) next to guanine (G) in the DNA sequence, with the p indicating that C and G are con-
nected by a phosphodiester bond.methyl group to the 5 position of the cytosine pyrimdine ring
ELISA Enzyme llinked immunosorbent assay HCPT, e.g. monocyte activation test (MAT)
IKK IkB kinase, an enzyme complex involved in propagating cellular response to inflammation
IRAK Interleukin-1 receptor-associated kinase
LAL Limulus amebocyte lysate
LPS Lipopolysaccharide
MD-2 Molecule secreted glycoprotein that binds to extracellular domain of TLR4
MCP Macrophage chemotactic protein
MIP Macrophage inflammatory protein
NOD Nucleotide-binding oligomerization domain
PGE Prostaglandin E
2 2
RANTES Regulated on activation, normal T-expressed and Secreted
RNA Ribonucleic acid
SEA Staphylococcal enterotoxin A
Spe C Streptococcal pyrogenic exotoxin C
Spe F Streptococcal pyrogenic exotoxin F
TBK TANK binding kinase
2 © ISO 2021 – All rights reserved

TLR Toll-like receptor
TNF Tumour necrosis factor
TSST Toxic shock syndrome toxin
5 Characterization of pyrogen
5.1 General
On the basis of pyrogen origin, febrile response can be divided into three groups:
a) material-mediated pyrogenicity caused by chemical agents;
b) endotoxin-mediated pyrogenicity;
c) pyrogenicity mediated by microbial components other than endotoxin.
Non-endotoxin-mediated pyrogenicity corresponds to a generic name of febrile responses originating
from a) and c) above. However, the latter can be clearly distinguished from material-mediated
pyrogenicity, because the febrile reaction is originated from microbial contamination.
TLRs are proteins that constitute an important part of the immune system against microbial infections,
closely relate to pyrogenicity of microbial components. Thirteen kinds of human TLRs from TLR1
to TLR13 and the agonists to some of them have been identified to date. Most pyrogens that can be
assessed in the field of medical devices can be bioactive substances derived from microorganisms
present as contaminants of the device manufacturing process or present in materials. Since the
components are TLR agonists and act as pyrogen to human, the knowledge for TLRs is very significant
for understanding pyrogens.
5.2 Bacterial endotoxin
Bacterial endotoxin, an important component of the outer membrane of Gram-negative bacteria, is the
most powerful pyrogen recognized by TLR4. Endotoxin is a modulator of the host immune response
and exhibits a variety of biological activities, for example, activation of macrophages, mitogenicity and
adjuvanticity, causing Schwartzman reactions in addition to pyrogenicity. From the clinical standpoint,
endotoxin causes sepsis, septic shock and multiple organ failure, which are systemic disorders with a
high mortality rate.
Endotoxin generally consists of a heteropolysaccharide part subdivided into an O-specific chain, a core
oligosaccharide, and a lipid component called lipid A that is a biologically active centre of endotoxin.
The potency of endotoxin is influenced by acylation and phosphorylation patterns, and the presence/
absence of polar-head group bound to phosphate residue in lipid A molecule. In addition, endotoxin has
species-specificity for the expression of its bioactivity.
In the natural world, Gram-negative bacteria are widely distributed in water (rivers and sea), air, soil, and
also human body. It is likely therefore that biomaterials made of natural substances are contaminated
with the bacteria and their components. Autoclaving, irradiation and gas sterilization during the
manufacturing process are able to kill the bacteria. However, microbial components, particularly
endotoxin cannot be inactivated by such ordinary sterilization methods, and once contaminated it is
quite difficult to remove the endotoxin during the manufacturing process. During the manufacturing
process, endotoxin contamination can be reduced or eliminated by depyrogenization (e.g. 250 °C for
[50][66]
30 min, use of chemicals to inactivate endotoxin such as polymyxin-B or by using endotoxin-free
water in the washing and manufacturing processes.
5.3 Microbial components other than endotoxin
Microorganisms produce various bioactive substances other than endotoxins. Lipoteichoic acid, an
important component of the outer membrane of Gram-positive bacteria, represents a counterpart to
endotoxin and acts as a pyrogen recognized by TLR2 that interacts and forms a heterodimer with TLR1
or TLR6. Lipoproteins, lipopeptides, and lipoarabinomannan that are the cellular components of various
microorganisms are also known to act as TLR2 agonists. Although peptidoglycan that constructs
cell wall of Gram-positive and Gram-negative bacteria was considered as TLR2 agonist, it is recently
suggested that NOD1 and NOD2 proteins can play a role of mediating the expression of its bioactivity
rather than TLR2. In addition, viral double-stranded RNA, bacterial flagella, and bacterial and viral CpG
DNA have been identified as the agonists of TLR3, TLR5, and TLR9, respectively, and all of them acts
as pyrogens to human. Although pyrogenicity has not been reported for any kind of (1,3)-β -D-glucan
preparation, it can be noted that certain kinds of (1,3)-β -D-glucan can enhance endotoxin toxicity.
It has been reported that exotoxins and enterotoxins such as TSST-1, SEA, Spe F, and Spe C produced
by various pathogenic microorganisms cause febrile response in the human body by the toxin-specific
manner that can be different from TLR signal transduction. There was an outbreak of inflammation,
fever and peritonitis in some patients due to contamination of solution with peptidoglycan during
[52][76]
dialysis .
5.4 Pro-inflammatory cytokines
Since febrile responses induced by TLR agonists are mediated by pro-inflammatory cytokines such as
TNFα, IL-1β, IL-6, and INF-γ produced by human immune cells, the endogenous mediator itself naturally
acts as pyrogen. Each cytokine further activates immune cells through the cytokine network, because
receptors specific to the cytokines are located on the cell surface of monocytes and macrophages in
addition to TLRs.
5.5 Chemical agents and other pyrogens
Pyrogenicity of chemicals or natural substances other than microbial components is not well known.
In addition, over 1 000 new compounds are discovered or synthesized each year worldwide, but the
biological properties of each compound are not well understood. Most chemicals currently used as
biomaterials for medical devices, are safe and are non-pyrogenic to humans. However, it is possible that
some new biomaterials and chemicals can cause febrile reaction to human.
This possibility also holds true for non-autologous cellular products which can evoke immunological
recognition and activation of immune-competent cells.
As an example, chemicals that are known to induce febrile reaction in humans are listed below. These
chemicals can be divided mainly into three groups according to principle for inducing a febrile response:
a) agents that directly stimulate thermoregulatory centres of the brain and nervous system,
b) uncoupling agents of oxidative phosphorylation, and
c) pyrogens with mechanisms that are not well known.
The chemicals listed below are known to cause a febrile response in humans:
— prostaglandins;
— inducers (e.g. polyadenylic, polyuridylic, polybionosinic, and polyribocytidylic acids);
— substances disrupting the function of thermoregulatory centres (e.g. lysergic acid diethylamide,
cocaine, morphine);
— neurotransmitters (e.g. noradrenaline, serotonin);
— uncoupling agents of oxidative phosphorylation (e.g. 4, 6-dinitro-o-cresol, dinitrophenol, picric
acid);
4 © ISO 2021 – All rights reserved

— N-phenyl-β -naphthylamine and aldo-α -naphthylamine (the febrile mechanism is unknown);
— metals such as nickel salts, in some instances.
[23] [61]
In addition to these chemicals, there is a possibility that microspheres and nanoparticles, including
[7] [23] [61]
implant-derived wear debris, can act as pyrogens. Microspheres, particles and nanoparticles
consisting of specific sizes could be phagocytosed by macrophages and activate macrophage-released
pro-inflammatory cytokines such as TNFα. TNFα is one of the endogenous pyrogens.
5.6 Principle of febrile reaction
TLRs are a class of single membrane-spanning non-catalytic receptors that recognize structurally
conserved molecules derived from microbes once they have breached physical barriers such as the skin
or intestinal tract mucosa and activate immune cells. They are believed to play a key role in the innate
immune system and are known to function as dimers. Although most TLRs appear to act as homodimers,
TLR2 forms heterodimers with TLR1 or TLR6, each dimer having different ligand specificity. TLRs can
also depend on other co-receptors for full ligand sensitivity, such as in the case of TLR4's recognition
of endotoxin, which requires a MD-2 molecule. CD14 and LPS binding protein are known to facilitate
the presentation of endotoxin to MD-2. When activated, TLRs recruit adapter molecules within the
cytoplasm of cells in order to propagate a signal. Four adapter molecules are known to be involved in
signalling. These proteins are known as MyD88, Tirap (also called Mal), Trif, and Tram. The adapters
activate other molecules within the cell, including certain protein kinases (IRAK1, IRAK4, TBK1, and
IKKi) that amplify the signal, and ultimately lead to the induction or suppression of genes (NF-κB, AP-1,
and IRP3) that orchestrate the inflammatory response.
Following activation by ligands of microbial origin, several reactions are possible. Immune cells can
produce cytokines that trigger inflammation. Particularly, IL-1β is closely associated with induction of
febrile reaction. IL-6 and TNFα were isolated later and found to be pyrogenic cytokines as well, although
[28],[29]
at much higher doses . The current understanding of the mechanism of fever in mammals is that
these proinflammatory cytokines result in the expression of the COX-2 which mediates PGE synthesis.
[30] [47] [48]
Mice deficient in COX-2 do not develop fever in response to LPS, IL-1 or IL-6 , and PGE triggers
an intracellular signalling cascade that changes the set point of body temperature. Thus, IL-1β, IL-6 and
TNFα are the mediators released by immune cells upon contact with pyrogens that are responsible for
triggering the fever reaction in the brain. Substance P is known to induce fever through the production
[17]
of TNF-α, IL-6 and PGE2 .
TLRs seem to be involved in the cytokine production and cellular activation as well as in the adhesion
and phagocytosis of microorganisms and other potential pyrogens.
Independent of TLR signalling pathway and subsequent cytokine production, body temperature could
be increased by agents that directly stimulate thermoregulatory centres. Also, uncoupling agents
of oxidative phosphorylation can increase body temperature as a result of activating the electron
transport chain in mitochondria.
6 Assessment of p yrogenicity
6.1 General
There are three methods used for pyrogenicity testing, which are described below. The in vivo rabbit
pyrogen test is the only test that directly measures the febrile response in the body as an end point,
in accordance with the definition of a pyrogen, which the other two methods do not. Instead the in
vitro methods detect pyrogens using different end points, such as cytokine production and protein
coagulation.
6.2 Bacterial endotoxin test (BET)
6.2.1 General
The bacterial endotoxin test is harmonized with several pharmacopaeia. This test is to detect or
quantify bacterial endotoxin of Gram-negative bacterial origin using a lysate reagent that is an aqueous
extract of circulating amebocytes of the horseshoe crab (Limulus polyphemus or Tachypleus tridentatus).
The bacterial endotoxin test is technically divided into two methods; one is the gel-clot technique based
on gel formation by the reaction of the lysate reagent with endotoxins, and other is the photometric
technique originating from endotoxin-induced optical changes of the lysate reagent. The latter is further
subdivided into two methods: one is turbidimetric technique measuring the endotoxin concentrations
of sample solutions based on the measurement of turbidity change accompanying the gel formation, and
other is chromogenic technique estimating the endotoxin concentrations by measuring optical density
of the colour of chromophore released from a synthetic chromogenic substrate that is a substituent
for the final step of the enzymatic cascade reaction described below. Each photometric technique is
classified as either end point or kinetic method.
The bacterial endotoxin test can be used to monitor endotoxin contamination in manufacturing
processes of medical devices and the final products from the viewpoint of routine quality control.
Before starting use of the lysate reagent extracted from Tachypleus tridentatus, this test was termed
Limulus amoebocyte lysate (LAL) test in the past.
NOTE Other methods are available for the detection of bacterial endotoxins, for example, the fluorescent
method using recombinant Factor C, see Reference [6].
6.2.2 Principle of LAL reaction
The BET is an enzymatic cascade reaction that has the highest sensitivity to detect and quantify Gram-
negative bacterial endotoxins. First, factor C, endotoxin-sensitive serine protease zymogen present
in the lysate reagent, is activated by endotoxin. The activated factor C converts factor B from the
inactive form to the active form that further converts proclotting enzyme to clotting enzyme. Finally,
the clotting enzyme converts coagulogen to coagulin that leads to gel formation. In addition to factor
C, original lysate reagent contains factor G that is activated by (1,3)-β-D-glucans and subsequently
converts proclotting enzyme to clotting enzyme. Endotoxin-specific LAL reagent has been developed
by removing factor G or saturating its function.
Since the BET is based on an enzymatic reaction, it is influenced by the temperature and pH of sample
solution, and it is also enhanced or inhibited by various compounds such as protease, protease inhibitors,
metal ions, surfactants, chelates, salts and sugars if they are present in sufficient concentrations.
Therefore, tests for interfering factors can be performed to check the presence of inhibitors and
enhancers of the reaction in sample solution. The effect of the interfering factors can be avoided by the
dilution of the sample solution.
6.2.3 General procedure of BET
General methods for detection and quantification of endotoxin have been discussed in pharmacopoeias
in several countries and AAMI ST 72. The details are referred to in these documents.
It is noted that pyrogen-free water can be used as an extraction medium for preparing sample solution
unless otherwise specified. Endotoxin present in medical devices and their materials typically are
extracted at the ambient temperature.
6.2.4 Properties of the BET
The LAL assay is available as a simple and quick test with high-sensitively detect to endotoxin, indicating
the presence of Gram-negative bacterial contamination on medical devices. Endotoxin has species-
specificity for expression of the toxicity depending upon chemical structure of lipid A portion. Since
the structural requirement of endotoxin on LAL activity is not strict compared with other biological
6 © ISO 2021 – All rights reserved

properties of endotoxin such as cytokine release from inflammatory cells, the BET exhibits a wider
[16]
spectrum of endotoxin detection than HCPT .
Endotoxin contamination on medical devices can be indicative of more general microbiological
contamination. However, there is no correlation between the amount of endotoxin on a device and the
number of other microorganisms on a device. The BET is very specific for Gram-negative bacteria or
endotoxin contamination. Historically, the predominant and most potent pyrogenic contaminants in the
manufacturing of medical devices that can be controlled are bacterial endotoxins. Bacterial endotoxin
contamination is difficult to prevent, because it is ubiquitous in nature, stable, and small enough to pass
through conventional sterilizing filters.
However, it could be considered that the property of BET described above provides not only merit, but
also a disadvantage. The most important disadvantage is that the BET cannot detect pyrogens other
than endotoxin. In addition, since the knowledge of the kind of active endotoxin to human is limited due
to the highly structural requirement for expression of the toxicity, then the BET is not always reflective
of the human pyrogenic response.
Device manufacturers extract endotoxin from medical devices and know that the recovery extraction
efficiency of endotoxins from devices is less than 100 %. In some cases, endotoxin adsorbed on to
certain plastic, ceramic, or metal and certain natural products are not efficiently recovered by general
extraction methods using water. However, the extraction parameters recommended by both the US.
Food and Drug Administration and other national Pharmacopeia, according to regulatory evidences
proven through years of use, have been sufficient in assuring the non-pyrogenicity of medical devices at
[20]
the specified limits for the intended use of the device .
6.3 Rabbit pyrogen test
6.3.1 General
The rabbit pyrogen test is the only known test to detect material-mediated pyrogens, as well as
pyrogens caused by microorganisms.
The positive pyrogenicity of the high-temperature extract in this test suggests the presence of non-
endotoxin pyrogens in the products. The rabbit test does not cover methods to quantify endotoxin in
the final products as a routine quality control test.
As stated in ISO 10993-11, medical devices containing new substances that have previously elicited a
pyrogenic response, and/or new chemical entities where the pyrogenic potential is unknown can be
evaluated for material mediated pyrogenicity.
6.3.2 Principle of the rabbit test
After intravenous injection of a physiological saline extract from medical devices or their materials,
core body temperature is kinetically measured to evaluate the in vivo mammalian febrile response to
pyrogens.
6.3.3 Pr
...


RAPPORT ISO/TR
TECHNIQUE 21582
Première édition
2021-07
Pyrogénicité — Principes et méthodes
d'essai pour la recherche des
pyrogènes sur les dispositifs médicaux
Pyrogenicity — Principles and methods for pyrogen testing of medical
devices
Numéro de référence
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2021
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d'application .1
2 Références normatives .1
3 Termes et définitions . 1
4 Abréviations . 2
5 Caractérisation des pyrogènes .3
5.1 Généralités . 3
5.2 Endotoxine bactérienne . 3
5.3 Composants microbiens autres que l'endotoxine . 4
5.4 Cytokines pro-inflammatoires . 4
5.5 Agents chimiques et autres pyrogènes . 4
5.6 Principe de la réaction fébrile . 5
6 Évaluation de la pyrogénicité . .6
6.1 Généralités . 6
6.2 Essai de détection des endotoxines bactériennes (BET) . 6
6.2.1 Généralités . 6
6.2.2 Principe de la réaction LAL . . 6
6.2.3 Caractéristiques générales de l'essai BET. 7
6.2.4 Propriétés de l'essai BET . 7
6.3 Essai de pyrogénicité sur le lapin . 7
6.3.1 Généralités . 7
6.3.2 Principe de l'essai sur le lapin . 8
6.3.3 Mode opératoire de l'essai sur le lapin. 8
6.3.4 Caractéristiques de l'essai sur le lapin . 8
6.4 Essai de détection des pyrogènes à base de cellules humaines (HCPT) . 8
6.4.1 Généralités . 8
6.4.2 Principe de l'essai HCPT . 9
6.4.3 Sélection des cellules humaines . 9
6.4.4 Sélection du marqueur cytokine . 10
6.4.5 Mode opératoire de l'essai HCPT . 10
6.4.6 Caractéristiques de l'essai HCPT . 11
6.4.7 Étude de validation .12
7 Conclusion .12
Bibliographie .13
iii
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes
nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est
en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux.
L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document
a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2
(voir www.iso.org/directives).
L'attention est attirée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de
brevets reçues par l'ISO (voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l'intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion
de l'ISO aux principes de l'Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir www.iso.org/avant-propos.
Le présent document a été élaboré par le comité technique ISO/TC 194, Évaluation biologique et clinique
des dispositifs médicaux.
Il convient que l'utilisateur adresse tout retour d'information ou toute question concernant le présent
document à l'organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l'adresse www.iso.org/fr/members.html.
iv
Introduction
Actuellement, la sécurité des dispositifs médicaux est évaluée sur la base des études toxicologiques et
autres travaux recommandés dans la série de normes ISO 10993.
La pyrogénicité due aux matériaux constitue un effet systémique qui est inclus dans l'Annexe G de
l'ISO 10993-11:2017; cependant, des mesures ont été prises afin que les essais de pyrogénicité soient
appréhendés d'une manière générale dans le présent document.
Une réponse pyrogénique correspond à l'effet indésirable d'un agent chimique ou d'une autre substance,
telle qu'un composant microbien, qui produit une réponse fébrile. Les essais sur la réponse pyrogénique
sont nécessaires pour évaluer la sécurité des produits qui se trouvent au contact direct ou indirect de la
circulation sanguine et du système lymphatique, du liquide cérébrospinal (LCS) et qui interagissent de
manière systémique avec le corps humain.
Actuellement, les méthodes acceptées pour évaluer la pyrogénicité des dispositifs médicaux et de leurs
matériaux sont l'essai de pyrogénicité in vivo sur le lapin et l'essai in vitro de détection des endotoxines
bactériennes. Les modes opératoires de base, y compris la préparation des échantillons de chaque
article d'essai, sont déjà établis, harmonisés au niveau international et mentionnés dans les lignes
directrices et les pharmacopées correspondantes.
Récemment, un essai de détection de pyrogènes in vitro utilisant des cellules immunitaires humaines,
appelé «essai de détection des pyrogènes à base de cellules humaines (HCPT)», a été développé et
appliqué pour détecter les pyrogènes dans les médicaments parentéraux. Le concept de l'application
de l'essai pour la recherche des pyrogènes sur les dispositifs médicaux est examiné en fonction de
l'exposition directe ou indirecte aux cellules sanguines humaines (HCPT).
v
RAPPORT TECHNIQUE ISO/TR 21582:2021(F)
Pyrogénicité — Principes et méthodes d'essai pour la
recherche des pyrogènes sur les dispositifs médicaux
1 Domaine d'application
Le présent document spécifie les principes et méthodes applicables aux essais de pyrogénicité des
dispositifs médicaux et des matériaux entrant dans leur composition.
2 Références normatives
Le présent document ne contient aucune référence normative.
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l'adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l'adresse https:// www .electropedia .org/
3.1
dispositif médical
instrument, appareil, outil, machine, dispositif, implant, réactif ou calibrateur in vitro, logiciel, matériel
ou autre article similaire ou associé, dont le fabricant prévoit qu'il soit utilisé, seul ou en association
chez l'être humain pour la (les) fin(s) spécifique(s) suivante(s):
— diagnostic, prévention, contrôle, traitement ou atténuation d'une maladie;
— diagnostic, contrôle, traitement, atténuation ou compensation d'une blessure;
— étude, remplacement, modification ou soutien de l’anatomie ou d’un processus physiologique;
— soutien ou maintien de la vie;
— maîtrise de la conception;
— désinfection des dispositifs médicaux;
— communication d'informations par un examen in vitro de spécimens (prélèvements) provenant du
corps humain;
et dont l'action principale voulue n'est pas obtenue par des moyens pharmacologiques ou
immunologiques ni par métabolisme, dans le corps humain ou à la surface de celui-ci, mais dont la
fonction peut être assistée par de tels moyens
Note 1 à l'article: Les produits pouvant être considérés comme des dispositifs médicaux dans certaines
juridictions, mais pas dans d’autres, incluent:
— les produits désinfectants;
— les aides pour les personnes handicapées;
— les dispositifs intégrant des tissus animaux et/ou humains;
— les dispositifs pour les technologies de fécondation in vitro et de reproduction assistée.
[SOURCE: GHTF/SG1/N071: 2012, 5.1]
3.2
pyrogène
substance qui génère de la fièvre
3.3
pyrogénicité
capacité, de la part d'un agent chimique ou d'une autre substance, de produire une réponse fébrile
3.4
réponse fébrile
température supérieure à la normale due à une élévation du point d'équilibre thermique du corps
Note 1 à l'article: Elle est également appelée fièvre ou pyrexie.
3.5
phosphorylation oxydative
voie métabolique de la plupart des organismes aérobies, qui utilise des enzymes pour oxyder les
nutriments et libérer de l'énergie
4 Abréviations
COX Cyclooxygénase
CpG Cytosine (C) précédant une guanine (G) dans le segment d'ADN, le p indiquant que C et G sont
reliées par une liaison phosphodiester.groupe méthyle en position 5 du cycle pyrimidine de
la cytosine
ELISA Essai HCPT réalisé par dosage d'immunoabsorption par enzyme liée, par exemple, essai d'acti-
vation des monocytes (MAT)
IKK Kinase IkB, qui est un complexe enzymatique impliqué dans la propagation de la réponse
cellulaire à l'inflammation
IRAK Kinase associée au récepteur de l'interleukine-1
LAL Lysat d'amébocytes de limule
LPS Lipopolysaccharide
MD-2 Glycoprotéine sécrétée qui se lie au domaine extracellulaire du TLR4
MCP Protéine chimiotactique des macrophages
MIP Protéine inflammatoire des macrophages
NOD Domaine d'oligomérisation de liaison aux nucléotides
PGE Prostaglandine E
2 2
RANTES Regulated on Activation, Normal T-Expressed and Secreted
ARN Acide ribonucléique
SEA Entérotoxine staphylococcique A
Spe C Exotoxine pyrogène streptococcique C
Spe F Exotoxine pyrogène streptococcique F
TBK Kinase de liaison à TANK
TLR Récepteur de type Toll
TNF Facteur de nécrose tumorale
TSST Toxine du syndrome de choc toxique
5 Caractérisation des pyrogènes
5.1 Généralités
En fonction de l'origine des pyrogènes, la réponse fébrile peut être classée en trois groupes:
a) pyrogénicité due aux matériaux, causée par des agents chimiques;
b) pyrogénicité due aux endotoxines;
c) pyrogénicité due à des composants microbiens autres que les endotoxines.
La pyrogénicité due à des composants autres que les endotoxines correspond à un nom générique de
réponses fébriles au sens des alinéas a) et c) ci-dessus. Toutefois, cette dernière peut être clairement
distinguée de la pyrogénicité due aux matériaux, car la réaction fébrile provient d'une contamination
microbienne.
Les TLR sont des protéines qui constituent une part importante du système immunitaire face aux
infections microbiennes et qui sont étroitement liées à la pyrogénicité des composants microbiens.
Treize types de TLR humains (TLR1 à TLR13) et les agonistes de certains d'entre eux ont été identifiés
à ce jour. La plupart des pyrogènes identifiables dans le domaine des dispositifs médicaux peuvent
être des substances bioactives issues de micro-organismes, présents en tant que contaminants lors
du processus de fabrication du dispositif ou présents dans les matériaux. Comme les composants sont
des agonistes des TLR et agissent comme des pyrogènes chez l'homme, la connaissance des TLR est
essentielle pour comprendre les pyrogènes.
5.2 Endotoxine bactérienne
L'endotoxine bactérienne, qui constitue la majeure partie de la membrane externe des bactéries à Gram
négatif, est le pyrogène le plus puissant reconnu par le TLR4. L'endotoxine est un modulateur de la
réponse immunitaire de l'hôte et présente une variété d'activités biologiques, telles que l'activation des
macrophages, la mitogénicité et l'adjuvanticité, provoquant des réactions de Shwartzman en plus de
la pyrogénicité. D'un point de vue clinique, l'endotoxine provoque un sepsis, un choc septique et une
défaillance multiorganique, qui sont des troubles systémiques avec un taux de mortalité élevé.
L'endotoxine se compose généralement d'une partie hétéropolysaccharidique qui se subdivise en une
chaîne O-spécifique, un cœur oligosaccharidique et un composant lipidique appelé lipide A, qui est un
centre biologiquement actif de l'endotoxine. La puissance de l'endotoxine est influencée par les degrés
d'acylation et de phosphorylation, ainsi que par la présence ou l'absence d'un groupe de tête polaire lié
à un résidu phosphate dans la molécule de lipide A. Enfin, l'endotoxine présente une spécificité d'espèce
en ce qui concerne l'expression de sa bioactivité.
Dans le monde de la nature, les bactéries à Gram négatif sont largement répandues dans l'eau (fleuves
et mer), l'air, le sol ainsi que le corps humain. Il est donc probable que les biomatériaux fabriqués à
partir de substances naturelles soient contaminés par des bactéries et leurs composants. L'autoclavage,
l'irradiation et la stérilisation au gaz, utilisés au cours du processus de fabrication, sont à même de
tuer les bactéries. Cependant, les composants microbiens, notamment l'endotoxine, ne peuvent pas
être inactivés par ces méthodes de stérilisation classiques, car, une fois qu'il y a eu contamination, il
est assez difficile d'éliminer l'endotoxine au cours du processus de fabrication. Lors du processus de
fabrication, il est possible de réduire ou d'éliminer la contamination par endotoxine en procédant à une
dépyrogénisation (par exemple, 250 °C pendant 30 minutes), en utilisant des substances chimiques
[50],[66]
permettant d’inactiver les endotoxines, telles que la polymyxine B , ou en utilisant une eau
exempte d'endotoxines dans les processus de lavage et de fabrication.
5.3 Composants microbiens autres que l'endotoxine
Les micro-organismes produisent de nombreuses autres substances bioactives que des endotoxines.
L'acide lipoteichoïque, important composant de la membrane externe des bactéries à Gram positif,
représente une contrepartie de l'endotoxine et agit comme un pyrogène reconnu par le TLR2 qui
interagit et forme un hétérodimère avec le TLR1 ou le TLR6. Les lipoprotéines, les lipopeptides et les
lipoarabinomannanes qui sont les composants cellulaires de divers micro-organismes sont également
connus pour agir comme agonistes du TLR2. Bien que le peptidoglycane, qui constitue la paroi
cellulaire des bactéries à Gram positif et à Gram négatif, ait été considéré comme un agoniste du TLR2,
il a récemment été évoqué que les protéines NOD1 et NOD2 pouvaient jouer un rôle de médiateur dans
l'expression de sa bioactivité plutôt que le TLR2. D'autre part, l'ARN viral double brin, les flagelles
bactériens et l'ADN CpG bactérien et viral ont été identifiés comme étant, respectivement, des agonistes
du TLR3, TLR5 et TLR9, et tous agissent comme des pyrogènes pour l'homme. Bien qu'il n'y ait pas eu de
pyrogénicité rapportée pour un quelconque type de préparation de (1,3)-β -D-glucane, il est à noter que
certains types de (1,3)-β -D-glucane peuvent renforcer la toxicité des endotoxines.
Il a été observé que les exotoxines et les entérotoxines telles que TSST-1, SEA, Spe F et Spe C produites
par divers micro-organismes pathogènes provoquent une réponse fébrile du corps humain, d'une
manière spécifique de la toxine qui peut être différente de la transduction du signal du TLR. On a noté
des cas d'inflammation, de fièvre et de péritonite chez certains patients en raison de la contamination
[52],[76]
de la solution par le peptidoglycane en cours de dialyse .
5.4 Cytokines pro-inflammatoires
Étant donné que les réponses fébriles induites par les agonistes des TLR sont médiées par des cytokines
pro-inflammatoires (telles que le TNFα, l’IL-1β, l’IL-6 et l’INF-γ) produites par les cellules immunitaires
humaines, le médiateur endogène, lui-même, agit naturellement comme un pyrogène. Chaque cytokine
active à son tour les cellules immunitaires par le biais du réseau de cytokines, car les récepteurs
spécifiques des cytokines se trouvent à la surface des cellules des monocytes et des macrophages, en
plus des TLR.
5.5 Agents chimiques et autres pyrogènes
La pyrogénicité des substances chimiques ou des substances naturelles autres que les composants
microbiens n'est pas encore bien connue. En outre, plus de 1 000 nouveaux composés sont découverts
ou synthétisés chaque année dans le monde, mais les propriétés biologiques de chaque composé ne sont
pas bien comprises. La plupart des substances chimiques actuellement utilisées comme biomatériaux
pour les dispositifs médicaux sont sûres et non pyrogènes pour l'homme. Toutefois, il est possible que
certains nouveaux biomatériaux et substances chimiques puissent provoquer une réaction fébrile chez
l'homme.
Cette possibilité vaut également pour les produits cellulaires non autologues qui peuvent déclencher
une reconnaissance immunologique et une activation des cellules immunocompétentes.
À titre d'exemple, les substances chimiques connues pour induire une réaction fébrile chez l'homme sont
énumérées ci-dessous. Ces substances chimiques peuvent être divisées en trois groupes principaux,
selon le principe de déclenchement de la réponse fébrile:
a) agents stimulant directement les centres thermorégulateurs du cerveau et du système nerveux;
b) agents de découplage de la phosphorylation oxydative; et
c) pyrogènes dont les mécanismes ne sont pas bien connus.
Les substances chimiques énumérées ci-dessous sont connues pour entraîner une réponse fébrile chez
l'homme:
— prostaglandines;
— inducteurs (par exemple, acides polyadénylique, polyuridylique, polybionosinique et
polyribocytidylique);
— substances empêchant le fonctionnement des centres thermorégulateurs (par exemple, diéthylamide
de l'acide lysergique, cocaïne, morphine);
— neurotransmetteurs (par exemple, noradrénaline, sérotonine);
— agents découplants de la phosphorylation oxydative (par exemple, 4,6-dinitro-o-crésol,
dinitrophénol, acide picrique);
— N-phenyl-β -naphtylamine et aldo-α -naphtylamine (mécanisme fébrile inconnu);
— métaux tels que les sels de nickel, dans certains cas.
[23] [61]
Hormis ces substances chimiques, il est possible que des microsphères et des nanoparticules ,
[7]
y compris des débris d'usure provenant d'implants , puissent agir comme des pyrogènes. Les
[23] [61]
microsphères, les particules et les nanoparticules de taille spécifique pourraient être phagocytées
par les macrophages et activer des cytokines pro-inflammatoires libérées par les macrophages, comme
le TNFα. Le TNFα est l'un des pyrogènes endogènes.
5.6 Principe de la réaction fébrile
Les TLR sont une classe de récepteurs transmembranaires simples, non catalytiques, qui reconnaissent
les structures moléculaires conservées des microbes, une fois que ceux-ci ont franchi des barrières
physiques, telles que la peau ou la muqueuse du tractus intestinal, et activent les cellules immunitaires.
Ils sont censés jouer un rôle clé dans le système immunitaire inné et sont connus pour fonctionner en
tant que dimères. Bien que la plupart des TLR semblent fonctionner comme des homodimères, TLR2
forme des hétérodimères avec le TLR1 ou TLR6, chaque dimère présentant une spécificité différente
par rapport aux ligands. Les TLR peuvent également dépendre d'autres corécepteurs pour atteindre
une sensibilité totale aux ligands, comme dans le cas de la reconnaissance de l'endotoxine par le TLR4,
qui nécessite une molécule MD-2. Le CD14 et la protéine de liaison au LPS sont connus pour faciliter
la présentation de l'endotoxine à MD-2. Lorsqu'ils sont activés, les TLR recrutent des molécules
adaptatrices dans le cytoplasme des cellules afin de propager un signal. Quatre molécules adaptatrices
sont connues pour être impliquées dans la signalisation. Ces protéines sont connues sous le nom
de MyD88, Tirap (également appelée Mal), Trif et Tram. Les adaptateurs activent d'autres molécules au
sein de la cellule, notamment certaines protéines kinases (IRAK1, IRAK4, TBK1 et IKKi) qui amplifient
le signal et conduisent finalement à l'induction ou à la suppression de gènes (NF-κB, AP-1 et IRP3) qui
orchestrent la réponse inflammatoire.
Après activation par des ligands d'origine microbienne, plusieurs réactions sont possibles. Les cellules
immunitaires peuvent produire des cytokines qui déclenchent une inflammation. En particulier,
l'IL-1β est étroitement associée à l'induction de la réaction fébrile. L'IL-6 et le TNFα ont été isolés
plus tardivement et se sont révélés être également des cytokines pyrogéniques, bien qu'à des doses
[28],[29]
beaucoup plus élevées . Au stade actuel de la compréhension du mécanisme de la fièvre chez les
mammifères, il semble que ces cytokines pro-inflammatoires entraînent l'expression de la COX-2 qui
[30]
induit la synthèse de la PGE . Les souris présentant une déficience en COX-2 ne développent pas
[47] [48]
de fièvre en réponse au LPS, l’IL-1 ou l’IL-6 , et la PGE déclenche une cascade de signalisation
intracellulaire qui modifie le point d'équilibre thermique du corps. Ainsi, l’IL-1β, l’IL-6 et le TNFα sont
les médiateurs libérés par les cellules immunitaires au contact des pyrogènes qui sont responsables du
déclenchement de la réaction fébrile dans le cerveau. La substance P est connue pour induire la fièvre
[17]
par la production de TNF-α, IL-6 et PGE .
Les TLR semblent être impliqués dans la production de cytokines et l'activation cellulaire, ainsi que
dans l'adhésion et la phagocytose de micro-organismes et autres pyrogènes potentiels.
Indépendamment de la voie de signalisation des TLR et de la production ultérieure de cytokines, il
se pourrait que des agents stimulant directement les centres de thermorégulation augmentent la
température corporelle. De même, les agents de découplage de la phosphorylation oxydative peuvent
faire monter la température corporelle en raison de l'activation de la chaîne de transport des électrons
dans les mitochondries.
6 Évaluation de la pyrogénicité
6.1 Généralités
Il existe trois méthodes utilisées pour les essais de pyrogénicité, qui sont décrites ci-dessous. L'essai de
pyrogénicité in vivo sur le lapin est le seul essai qui mesure directement la réponse fébrile de l'organisme
en tant que point final, conformément à la définition d'un pyrogène, ce qui n’est pas le cas pour les deux
autres méthodes. À l'inverse, les méthodes in vitro détectent les pyrogènes à l’aide de différents points
finaux, tels que la production de cytokines ou la coagulation des protéines.
6.2 Essai de détection des endotoxines bactériennes (BET)
6.2.1 Généralités
L'essai de détection des endotoxines bactériennes est harmonisé avec plusieurs pharmacopées. Cet
essai consiste à détecter ou à quantifier les endotoxines bactériennes issues de bactéries à Gram
négatif à l'aide d'un réactif de lysat, qui est un extrait aqueux d'amébocytes circulants de limule
(Limulus polyphemus ou Tachypleus tridentatus). L'essai de détection des endotoxines bactériennes se
subdivise techniquement en deux méthodes: la technique par caillot de gel, qui repose sur la formation
d'un gel par réaction du réactif de lysat avec les endotoxines, et la technique photométrique, qui
repose sur les changements optiques du réactif de lysat induits par les endotoxines. Cette dernière
est, à son tour, subdivisée en deux méthodes: l'une est une technique turbidimétrique qui mesure les
concentrations d'endotoxines des solutions échantillons sur la base de la mesure du changement de
turbidité accompagnant la formation du gel, et l'autre est une technique chromogénique qui estime
les concentrations d'endotoxines en mesurant la densité optique de la couleur du chromophore libéré
par un substrat chromogénique synthétique, qui est un substituant dans l'étape finale de la réaction
enzymatique en cascade décrite ci-dessous. Chaque technique photométrique est classée comme
méthode en point final ou comme méthode cinétique.
L'essai de détection des endotoxines bactériennes peut être utilisé pour surveiller la contamination
par les endotoxines dans les processus de fabrication des dispositifs médicaux et des produits finis,
du point de vue des contrôles de qualité de routine. Avant que le réactif de lysat extrait de Tachypleus
tridentatus ne commence à être utilisé, cet essai était appelé par le passé «essai au lysat d'amébocytes
de limule» (LAL).
NOTE Il existe d'autres méthodes pour la détection des endotoxines bactériennes, par exemple, la méthode
par fluorescence utilisant le facteur C recombinant, voir Référence [6].
6.2.2 Principe de la réaction LAL
L'essai BET est une réaction enzymatique en cascade qui offre la meilleure sensibilité pour détecter et
quantifier les endotoxines des bactéries à Gram négatif. Dans un premier temps, le facteur C, zymogène
de sérine protéase sensible aux endotoxines, présent dans le réactif de lysat, est activé par l'endotoxine.
Le facteur C activé convertit le facteur B, de la forme inactive à la forme active, qui ensuite convertit
l'enzyme précurseur en enzyme de coagulation. Pour finir, l'enzyme de coagulation transforme le
coagulogène en coaguline avec, pour conséquence, la formation d'un gel. En plus du facteur C, le réactif
de lysat initial contient le facteur G qui est activé par les (1,3)-β-D-glucanes, et convertit ensuite l'enzyme
précurseur en enzyme de coagulation. Le réactif LAL spécifique de l'endotoxine a été développé en
éliminant le facteur G ou en saturant sa fonction.
L'essai BET étant basé sur une réaction enzymatique, il est influencé par la température et le pH de la
solution échantillon. Il est également amplifié ou inhibé par différents composés, tels que la protéase,
les inhibiteurs de protéase, les ions métalliques, les tensioactifs, les chélates, les sels et les sucres s'ils
sont présents en concentrations suffisantes. Par conséquent, des essais sur les facteurs d'interférence
peuvent être réalisés pour vérifier la présence d'inhibiteurs et d'amplificateurs de la réaction dans
la solution échantillon. Il est possible d'éviter l'effet des facteurs d'interférence en diluant la solution
échantillon.
6.2.3 Caractéristiques générales de l'essai BET
Les méthodes générales de détection et de quantification de l'endotoxine ont été étudiées dans les
pharmacopées de plusieurs pays et dans la norme AAMI ST 72. Pour les détails, se reporter à ces
documents.
Il est à noter que, sauf indication contraire, on peut utiliser de l'eau apyrogène comme milieu d'extraction
pour préparer la solution échantillon. Les endotoxines présentes dans les dispositifs médicaux et leurs
matériaux sont généralement extraites à température ambiante.
6.2.4 Propriétés de l'essai BET
L'essai LAL est un essai simple et rapide qui détecte les endotoxines de manière hautement sensible
et permet de révéler la présence d'une contamination bactérienne à Gram négatif sur les dispositifs
médicaux. L'endotoxine présente une spécificité d'espèce, en ce qui concerne l'expression de la toxicité
en fonction de la structure chimique de la partie lipide A. Étant donné qu'il n'y a pas d'exigence
structurelle stricte de l'endotoxine sur l'activité LAL par rapport aux autres propriétés biologiques de
l'endotoxine, telles que la libération des cytokines par les cellules inflammatoires, l'essai BET offre un
[16]
spectre plus large de détection de l'endotoxine que l’essai HCPT .
La contamination par endotoxines des dispositifs médicaux peut être une indication d'une contamination
microbiologique plus générale. Toutefois, il n'y a pas de corrélation entre la quantité d'endotoxines
sur un dispositif et le nombre d'autres micro-organismes sur ce même dispositif. L'essai BET convient
particulièrement aux bactéries à Gram négatif ou à la contamination par endotoxines. Historiquement,
les contaminants pyrogènes les plus fréquents et les plus puissants dans la fabrication des dispositifs
médicaux qui peuvent être contrôlés sont les endotoxines bactériennes. La contamination par les
endotoxines bactériennes est difficile à prévenir, car elles sont omniprésentes dans la nature, stables et
suffisamment petites pour passer à travers les filtres de stérilisation conventionnels.
Néanmoins, on pourrait considérer que la propriété de l'essai BET décrit ci-dessus présente non
seulement un avantage, mais aussi un inconvénient. L'inconvénient majeur est que l'essai BET ne peut pas
détecter les pyrogènes autres que l'endotoxine. En outre, comme la connaissance du type d'endotoxine
active chez l'homme est limitée en raison de l'exigence hautement structurelle liée à l'expression de la
toxicité, il se peut alors que l'essai BET ne reflète pas toujours la réponse pyrogénique humaine.
Les fabricants de dispositifs extraient l'endotoxine des dispositifs médicaux et savent que l'efficacité de
l'extraction des endotoxines présentes sur les dispositifs est inférieure à 100 %. Dans certains cas, les
endotoxines adsorbées sur certains plastiques, céramiques ou métaux, ainsi que sur certains produits
naturels ne sont pas totalement récupérées par les méthodes générales d'extraction utilisant de l'eau.
Toutefois, les paramètres d'extraction recommandés par la Food and Drug Administration des États-
Unis et d'autres pharmacopées nationales, qui s’appuient sur des preuves réglementaires démontrées
par des années d'utilisation, sont suffisants pour garantir l'apyrogénicité des dispositifs médicaux dans
[20]
les limites spécifiées pour l'utilisation prévue du dispositif .
6.3 Essai de pyrogénicité sur le lapin
6.3.1 Généralités
L'essai de pyrogénicité sur le lapin est le seul essai connu pour détecter les pyrogènes dus aux matériaux,
ainsi que les pyrogènes induits par les micro-organismes.
La pyrogénicité positive de l'extrait à haute température de cet essai suggère la présence de pyrogènes
non endotoxiniques dans les produits. L'essai sur le lapin ne couvre pas les méthodes de quantification
des endotoxines dans les produits finis en tant qu'essai de routine pour le contrôle de la qualité.
Comme indiqué dans l'ISO 10993-11, les dispositifs médicaux contenant de nouvelles substances
ayant déjà provoqué une réponse pyrogénique, et/ou de nouvelles entités chimiques dont le potentiel
pyrogénique est inconnu, peuvent être évalués afin de déterminer la pyrogénicité due aux matériaux.
6.3.2 Principe de l'essai sur le lapin
Après injection intraveineuse d'un extrait de sérum physiologique provenant de dispositifs médicaux
ou de leurs matériaux, la température corporelle centrale est mesurée cinétiquement afin d'évaluer la
réponse fébrile in vivo des mammifères aux pyrogènes.
6.3.3 Mode opératoire de l'essai sur le lapin
Le protocole d'essai est décrit dans les lignes directrices et les pharmacopées correspondantes. Bien
que les lignes directrices/pharmacopées des différents pays varient en ce qui concerne les limites
du poids corporel des lapins, la détermination de la température initiale, la dose injectée de solution
échantillon et la réutilisation des lapins, la plupart des protocoles d'essai sont très similaires. Les
rapports échantillon/solvant et les conditions d'extraction applicables à la préparation de l'extrait des
dispositifs médicaux et des matériaux sont également définis dans l'ISO 10993-12.
Il est à noter que seul du sérum physiologique apyrogène peut être utilisé comme milieu d'extraction
pour préparer la solution échantillon. Pour l'extraction, il est possible d'utiliser la température la
plus élevée qui n'entraîne pas de détérioration significative du matériau, parmi les conditions de
l'ISO 10993-12.
6.3.4 Caractéristiques de l'essai sur le lapin
Fondamentalement, l'essai sur le lapin peut détecter toutes sortes de pyrogènes, ainsi que la puissance
réelle de la réponse fébrile. Cette réponse induite par chaque pyrogène est estimée sur la base de
l'augmentation de la température corporelle centrale in vivo du lapin. Ainsi, bien que la spécificité
d'espèce aux pyrogènes soit différente entre l'homme et le lapin, l'essai in vivo sur le lapin semble
présenter un avantage par rapport à l'essai HCPT. Mais, il présente aussi des inconvénients, tels qu'une
faible sensibilité, l'utilisation d'animaux et la nécessité d'une grande quantité d'articles d'essai.
L'essai de pyrogénicité sur lapin est la seule méthode connue et validée permettant de détecter les
pyrogènes dus aux matériaux, les substances chimiques relargables d'un matériau capable de provoquer
une réaction (fébrile) pyrogénique chez un patient. Les nouveaux matériaux/dispositifs implantables
ou en contact avec le sang peuvent faire l'objet d'un dépistage des pyrogènes dus aux matériaux.
Toutefois, dans la plupart des cas, l'essai de pyrogénicité sur le lapin n'est pas utilisé en remplacement
de l'essai BET.
6.4 Essai de détection des pyrogènes à base de cellules humaines (HCPT)
6.4.1 Généralités
L'essai HCPT repose sur une réaction immunologique au niveau cellulaire et constitue une méthode
in vitro de détection et de quantification des pyrogènes induisant une réaction fébrile due à l'activation
[13]
de cellules immunitaires humaines telles que les monocytes et les macrophages . Cet essai est
conçu pour évaluer la pyrogénicité due aux endotoxines et la pyrogénicité due aux autres composants
microbiens correspondant à une réponse fébrile induite par des agonistes des TLR. Outre les
agonistes des TLR, il est possible que le HCPT puisse quantifier la puissance de la cascade de réponses
inflammatoires initiée par la phagocytose des microsphères et des particules d'usure.
Les monocytes et les macrophages sont les principales cibles in vivo de l'endotoxine, et un certain
nombre d'études ont été réalisées à ce jour pour élucider la relation entre la structure chimique et
l'activité biologique de l'endotoxine en utilisant des cellules macrophages. La technique de base utilisée
dans l’essai HCPT repose sur les méthodes traditionnelles de la recherche sur les endotoxines. Étant
donné que cet essai présente un spectre plus large que l'essai de détection des endotoxines, il peut être
utile de l'utiliser comme passerelle entre l'essai de détection des endotoxines et l'essai sur le lapin, dans
la mesure où il est validé de manière appropriée.
6.4.2 Principe de l'essai HCPT
Les macrophages sont des cellules présentes dans les tissus, qui proviennent de globules blancs
spécifiques appelés monocytes. Les monocytes et les macrophages sont des phagocytes qui agissent à la
fois dans la défense non spécifique (ou immunité innée) et pour aider à initier des mécanismes de défense
spécifiques (ou immunité cellulaire) des animaux vertébrés. Leur rôle est de phagocyter les débris
cellulaires et les agents pathogènes sous forme de cellules stationnaires ou mobiles, de reconnaître les
agents pathogènes solubles par l'intermédiaire des TLR présents à la surface des cellules et de stimuler
les lymphocytes et autres cellules immunitaires pour qu'ils répondent aux agents pathogènes. En tant
que cellules sécrétrices, les monocytes et les macrophages sont essentiels à la régulation des réponses
immunitaires et à l'évolution de l'inflammation. Ces cellules sont activées par phagocytose ou par des
agonistes des TLR (voir 4.2 et 4.3) pour produire des substances chimiques puissantes, notamment des
cytokines. Les cytokines, telles que le TNFα, l'IL-1β et l'IL-6 en tant que facteurs de régulation, induisent
une réponse fébrile selon le mécanisme décrit en 4.6. Dans l'essai HCPT, les cytokines libérées par ces
cellules sont détectées et quantifiées par une méthode ELISA afin d'évaluer la puissance de la réaction
fébrile.
6.4.3 Sélection des cellules humaines
1)
Outre le sang total humain, des lignées de cellules myélomonocytaires humaines, telles que MM6 ,
2)[72]
et des cellules mononuclées humaines peuvent également servir de cellules indicatrices pour
l'essai HCPT. Du point de vue de l'utilisation en laboratoire (système d'approvisionnement et sécurité),
ces lignées cellulaires semblent être plus utiles que le sang total. Néanmoins, le sang total présente les
avantages suivants:
— tous les composants du sang sont présents dans des proportions physiologiques nécessaires à
l'interaction du pyrogène avec les leucocytes;
— l'immersion dans le sang total est possible, alors qu'elle pourrait ne pas l'être pour d'autres systèmes
cellulaires.
En revanche, les lignées cellulaires présentent les inconvénients suivants:
— le temps (généralement des semaines) nécessaire pour établir la lignée cellulaire à partir d'une
aliquote congelée. Il faut un nombre suffisant de cellules d'une sensibilité appropriée (aux pyrogènes)
pour les utiliser dans un essai;
— des irrégularités dans les sensibilités des cellules entre les différents passages;
— la nécessité d'une costimulation avec des agents, tels que l'ester de phorbol ou le calcitriol;
— la vérification de la présence continue sur la lignée cellulaire des divers éléments récepteurs
nécessaires à la transduction des réponses aux pyrogènes.
Il a été constaté que la sensibilité à l'endotoxine des lignées cellulaires diffère de l'une à l'autre, et parmi
ces lignées, seules les cellules MM6 produisent une grande quantité de TNFα en réponse à une quantité
relativement faible d'endotoxine après amorçage au calcitriol. Les cellules de sang total présentent une
1) Collection allemande de micro-organismes et de cultures cellulaires (DSMZ ; Cat. No. ACC 124), Braunschweig,
Allemagne.
2) The Monocyte Activation Test, CTL-MAT LLC, 20521 Chagrin Boulevard, Shaker Heights, Cleveland,
OH 44122-53
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...