ISO/FDIS 26203-1
(Main)Metallic materials — Tensile testing at high strain rates — Part 1: Elastic-bar-type systems
Metallic materials — Tensile testing at high strain rates — Part 1: Elastic-bar-type systems
ISO 26203-1:2018 specifies methods for testing metallic sheet materials to determine the stress-strain characteristics at high strain rates. This document covers the use of elastic-bar-type systems. The strain-rate range between 10−3 and 103 s−1 is considered to be the most relevant to vehicle crash events based on experimental and numerical calculations such as the finite element analysis (FEA) work for crashworthiness. In order to evaluate the crashworthiness of a vehicle with accuracy, reliable stress-strain characterization of metallic materials at strain rates higher than 10−3 s−1 is essential. This test method covers the strain-rate range above 102 s−1. NOTE 1 At strain rates lower than 10−1 s−1, a quasi-static tensile testing machine that is specified in ISO 7500‑1 and ISO 6892‑1 can be applied. NOTE 2 This testing method is also applicable to tensile test-piece geometries other than the flat test pieces considered here.
Matériaux métalliques — Essai de traction à vitesses de déformation élevées — Partie 1: Systèmes de type à barre élastique
ISO 26203-1:2018 spécifie des méthodes pour les essais des tôles de matériaux métalliques en vue de déterminer les caractéristiques contrainte-déformation à vitesses de déformation élevées. Ce document couvre l'utilisation des systèmes d'essai de type à barre élastique. La gamme de vitesses de déformation entre 10−3 s−1 et 103 s−1 est considérée être la plus pertinente pour les accidents de véhicule sur la base de calculs expérimentaux et numériques tels que le travail d'analyse par éléments finis (AEF) pour le comportement en cas d'accident. De façon à évaluer le comportement des véhicules en cas d'accident avec précision, une caractérisation fiable des caractéristiques contrainte-déformation des matériaux métalliques à des vitesses de déformation supérieures à 10−3 s−1 est essentielle. La présente méthode d'essai couvre la gamme de vitesses de déformation au-dessus de 102 s−1. NOTE 1 À des vitesses de déformation inférieures à 10−1 s−1, une machine d'essai de traction quasi-statique, spécifiée dans l'ISO 7500‑1 et l'ISO 6892‑1 peut être utilisée. NOTE 2 Cette méthode d'essai est également applicable aux géométries d'éprouvettes de traction autres que les éprouvettes plates considérées ici.
General Information
Relations
Standards Content (Sample)
FINAL DRAFT
International
Standard
ISO/TC 164/SC 1
Metallic materials — Tensile testing
Secretariat: AFNOR
at high strain rates —
Voting begins on:
2025-08-19
Part 1:
Elastic-bar-type systems
Voting terminates on:
2025-10-14
Matériaux métalliques — Essai de traction à vitesses de
déformation élevées —
Partie 1: Systèmes de type à barre élastique
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
ISO/CEN PARALLEL PROCESSING LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
Reference number
FINAL DRAFT
International
Standard
ISO/TC 164/SC 1
Metallic materials — Tensile testing
Secretariat: AFNOR
at high strain rates —
Voting begins on:
Part 1:
Elastic-bar-type systems
Voting terminates on:
Matériaux métalliques — Essai de traction à vitesses de
déformation élevées —
Partie 1: Systèmes de type à barre élastique
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
© ISO 2025
IN ADDITION TO THEIR EVALUATION AS
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
ISO/CEN PARALLEL PROCESSING
LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
or ISO’s member body in the country of the requester.
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland Reference number
ii
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Symbols and designations . 1
5 Principles . 3
6 Apparatus . 3
7 Test piece . 5
7.1 Test-piece shape, size and preparation .5
7.2 Typical test piece .7
8 Calibration of the apparatus . 8
8.1 General .8
8.2 Displacement measuring device .8
9 Procedure . 8
9.1 General .8
9.2 Mounting the test piece .8
9.3 Applying force .9
9.4 Measuring and recording .9
10 Evaluation of the test result .10
11 Test report .12
Annex A (informative) Quasi-static tensile testing method .13
Annex B (informative) Example of one-bar method .15
Annex C (informative) Example of split Hopkinson bar (SHB) method .21
Bibliography .28
iii
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent
rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a)
patent(s) which may be required to implement this document. However, implementers are cautioned that
this may not represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 164, Mechanical testing of metals, Subcommittee
SC 1, Uniaxial testing, in collaboration with the European Committee for Standardization (CEN) Technical
Committee CEN/TC 459/SC 1, Test methods for steel (other than chemical analysis), in accordance with the
Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This third edition cancels and replaces the second edition (ISO 26203-1:2018), which has been technically
revised.
The main changes are as follows:
— modification of note in subclause 7.1;
— note in A.6 changed to be part of main body.
A list of all parts in the ISO 26203 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
Introduction
Tensile testing of metallic sheet materials at high strain rates is important in order to achieve a reliable
−3 3 −1
analysis of vehicle crashworthiness. The strain-rate range between 10 and 10 s is considered to be the
most relevant to vehicle crash events based on experimental and numerical calculations such as the finite
element analysis (FEA) work for crashworthiness. In order to evaluate the crashworthiness of a vehicle with
−3 −1
accuracy, reliable stress-strain characterization of metallic materials at strain rates higher than 10 s is
3 −1
typically used. During a crash event, the maximum strain rate often reaches 10 s , at which the strength of
the material can be significantly higher than that under quasi-static loading conditions. Thus, the reliability
of crash simulation depends on the accuracy of the input data specifying the strain-rate sensitivity of the
materials.
Although there are several methods for high-strain rate testing, there are three significant problems to be solved.
The first problem is the noise in the force measurement signal.
— The test force is generally detected at a measurement point on the force measurement device that is
located some distance away from the test piece.
— Furthermore, the elastic wave which has already passed the measurement point returns there by
reflection at the end of the force measurement device. If the testing time is comparable to the time
for wave propagation through the force measurement device, the stress-strain curve often has large
oscillations as a result of the superposition of the direct and indirect waves. In quasi-static testing,
contrarily, the testing time is sufficiently long to have multiple round-trips of the elastic wave. Thus, the
force reaches a saturated state and equilibrates at any point of the force measurement device.
There are two different solutions for this problem.
— The first solution is to use a short force measurement device which will reach the saturated state quickly.
This approach is often adopted in the servo-hydraulic type system.
— The second solution is to use a very long force measurement device which allows the completion of a test
before the reflected wave returns to the measurement point. The elastic-bar-type system is based on the
latter approach.
The second problem is the need for rapid and accurate measurements of displacement or test piece
elongation.
— Conventional extensometers are unsuitable because of their large inertia. Non-contact type methods
such as optical and laser devices should be adopted. It is also acceptable to measure displacements using
the theory of elastic wave propagation in a suitably-designed apparatus, examples of which are discussed
in this document.
— The displacement of the bar end is simply calculated from the same data as force measurement, i.e. the
strain history at a known position on the bar. Thus, no assessment of machine stiffness is required in the
elastic-bar-type system.
The last problem is the inhomogeneous section force distributed along the test piece.
— In quasi-static testing, a test piece with a long parallel section and large fillets is recommended to achieve
a homogeneous uniaxial-stress state in the gauge section.
— In order to achieve a valid test with force equilibrium during the dynamic test, the test piece is designed
differently from the typically designed quasi-static test piece. Dynamic test pieces are intended to be
generally smaller in the dimension parallel to the loading axis than the test pieces typically used for
quasi-sta
...
ISO/TC 164/SC 1/WG 7
Secretariat: AFNOR
Date: 2025-0708-04
Metallic materials — Tensile testing at high strain rates —
Part 1:
Elastic-bar-type systems
Matériaux métalliques — Essai de traction à vitesses de déformation élevées —
Partie 1: Systèmes de type à barre élastique
FDIS stage
ISO #####-#:####(X/FDIS 26203-1:2025(en)
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication
may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying,
or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO
at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: + 41 22 749 01 11
EmailE-mail: copyright@iso.org
Website: www.iso.orgwww.iso.org
Published in Switzerland
© ISO #### 2025 – All rights reserved
ii
Contents
Foreword . iv
Introduction . v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Symbols and designations . 1
5 Principles . 3
6 Apparatus . 3
7 Test piece . 5
7.1 Test-piece shape, size and preparation . 5
7.2 Typical test piece . 9
8 Calibration of the apparatus . 10
8.1 General . 10
8.2 Displacement measuring device . 10
9 Procedure . 10
9.1 General . 10
9.2 Mounting the test piece . 11
9.3 Applying force . 11
9.4 Measuring and recording . 11
10 Evaluation of the test result . 13
11 Test report . 15
Annex A (informative) Quasi-static tensile testing method . 16
Annex B (informative) Example of one-bar method . 18
Annex C (informative) Example of split Hopkinson bar (SHB) method . 29
Bibliography . 39
iii
ISO #####-#:####(X/FDIS 26203-1:2025(en)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of
ISO documents should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights
in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s)
which may be required to implement this document. However, implementers are cautioned that this may not
represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 164, Mechanical testing of metals, Subcommittee
SC 1, Uniaxial testing, in collaboration with the European Committee for Standardization (CEN) Technical
Committee CEN/TC 459/SC 1, Test methods for steel (other than chemical analysis), in accordance with the
Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This third edition cancels and replaces the second edition (ISO 26203-1:2018), which has been technically
revised.
The main changes are as follows:
— — modification of note in 7.1subclause 7.1;;
— — Notenote in A.6A.6 changed to be part of main body.
A list of all parts in the ISO 26203 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
© ISO #### 2025 – All rights reserved
iv
Introduction
Tensile testing of metallic sheet materials at high strain rates is important in order to achieve a reliable
−3 3 −1
analysis of vehicle crashworthiness. The strain-rate range between 10 and 10 s is considered to be the
most relevant to vehicle crash events based on experimental and numerical calculations such as the finite
element analysis (FEA) work for crashworthiness. In order to evaluate the crashworthiness of a vehicle with
−3 −1
accuracy, reliable stress-strain characterization of metallic materials at strain rates higher than 10 s is
3 −1
typically used. During a crash event, the maximum strain rate often reaches 10 s , at which the strength of
the material can be significantly higher than that under quasi-static loading conditions. Thus, the reliability of
crash simulation depends on the accuracy of the input data specifying the strain-rate sensitivity of the
materials.
Although there are several methods for high-strain rate testing, there are three significant problems to be
solved.
The first problem is the noise in the force measurement signal.
— — The test force is generally detected at a measurement point on the force measurement device that is
located some distance away from the test piece.
— — Furthermore, the elastic wave which has already passed the measurement point returns there by
reflection at the end of the force measurement device. If the testing time is comparable to the time for
wave propagation through the force measurement device, the stress-strain curve often has large
oscillations as a result of the superposition of the direct and indirect waves. In quasi-static testing,
contrarily, the testing time is sufficiently long to have multiple round-trips of the elastic wave. Thus, the
force reaches a saturated state and equilibrates at any point of the force measurement device.
There are two different solutions for this problem.
— — The first solution is to use a short force measurement device which will reach the saturated state
quickly. This approach is often adopted in the servo-hydraulic type system.
— — The second solution is to use a very long force measurement device which allows the completion of a
test before the reflected wave returns to the measurement point. The elastic-bar-type system is based on
the latter approach.
The second problem is the need for rapid and accurate measurements of displacement or test piece elongation.
— — Conventional extensometers are unsuitable because of their large inertia. Non-contact type methods
such as optical and laser devices should be adopted. It is also acceptable to measure displacements using
the theory of elastic wave propagation in a suitably-designed apparatus, examples of which are discussed
in this document.
— — The displacement of the bar end is simply calculated from the same data as force measurement, i.e. the
strain history at a known position on the bar. Thus, no assessment of machine stiffness is required in the
elastic-bar-type system.
The last problem is the inhomogeneous section force distributed along the test piece.
— — In quasi-static testing, a test piece with a long parallel section and large fillets is recommended to
achieve a homogeneous uniaxial-stress state in the gauge section.
— — In order to achieve a valid test with force equilibrium during the dynamic test, the test piece is
designed differently from the typically designed quasi-static test piece. Dynamic test pieces are intended
v
ISO #####-#:####(X/FDIS 26203-1:2025(en)
to be generally smaller in the dimension parallel to the loading axis than the test pieces typically used for
quasi-static testing.
The elastic-bar-type system thus provides solutions for dynamic testing problems and is widely used to obtain
3 −1
accurate stress-strain curves at around 10 s . The International Iron and Steel Institute developed the
[ [1]]
“Recommendations for Dynamic Tensile Testing of Sheet Steel” 0 based on the interlaboratory test
conducted by various laboratories. The interlaboratory test results show the high data quality obtained by the
elastic-bar-type system. The developed knowledge on the elastic-bar-type system is summarized in this
[ [2]]
document, while ISO 26203-2 0 covers servo-hydraulic and other test systems used for high-strain-rate
tensile testing.
© ISO #### 2025 – All rights reserved
vi
Metallic materials — Tensile testing at high strain rates —
Part 1:
Elastic-bar-type systems
1 Scope
This document specifies guidelines for testing metallic sheet materials to determine the stress-strain
characteristics at high strain rates. This document covers the use of elastic-bar-type systems.
2 −1
This test method covers the strain-rate range above 10 s .
NOTE 1 This testing method is also applicable to tensile test-piece geometries other than the flat test pieces
considered here.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 6892-7500-1, Metallic materials — Tensile testing — Part 1: Method of test at room temperature
ISO 7500-1, Metallic materials — Calibration and verification of static uniaxial testing machines — Part 1:
Tension/compression testing machines — Calibration and verification of the force-measuring system
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at https://www.electropedia.org/
3.1 3.1
elastic-bar-type system
measuring system in which the force-measuring device is lengthened in the axial direction to prevent force
measurement from being affected by waves reflected from the ends of the apparatus
Note 1 to entry: The designation “elastic-bar-type system” comes from the fact that this type of system normally employs
a long elastic bar as force-me
...
PROJET FINAL
Norme
internationale
ISO/TC 164/SC 1
Matériaux métalliques — Essai de
Secrétariat: AFNOR
traction à vitesses de déformation
Début de vote:
élevées —
2025-08-19
Partie 1:
Vote clos le:
2025-10-14
Systèmes de type à barre élastique
Metallic materials — Tensile testing at high strain rates —
Part 1: Elastic-bar-type systems
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
PROJETS DE NORMES
TRAITEMENT PARALLÈLE ISO/CEN
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
NORMES POUVANT
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
Numéro de référence
PROJET FINAL
Norme
internationale
ISO/TC 164/SC 1
Matériaux métalliques — Essai de
Secrétariat: AFNOR
traction à vitesses de déformation
Début de vote:
élevées —
2025-08-19
Partie 1:
Vote clos le:
2025-10-14
Systèmes de type à barre élastique
Metallic materials — Tensile testing at high strain rates —
Part 1: Elastic-bar-type systems
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
DOCUMENT PROTÉGÉ PAR COPYRIGHT
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
© ISO 2025 INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
PROJETS DE NORMES
TRAITEMENT PARALLÈLE ISO/CEN
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
NORMES POUVANT
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse Numéro de référence
ii
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d'application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Symboles et désignations . 1
5 Principes . 3
6 Appareillage . 3
7 Éprouvette . 5
7.1 Forme, dimensions et préparation des éprouvettes .5
7.2 Éprouvettes typiques.7
8 Étalonnage des appareils . 8
8.1 Généralités .8
8.2 Dispositif de mesure du déplacement .9
9 Mode opératoire . 9
9.1 Généralités .9
9.2 Montage de l'éprouvette .9
9.3 Application de la force .9
9.4 Mesures et enregistrements.9
10 Évaluation des résultats d'essai .11
11 Rapport d'essai .12
Annexe A (informative) Méthode d'essai de traction quasi-statique .13
Annexe B (informative) Exemple de méthode à barre unique .15
Annexe C (informative) Exemple de la méthode avec barre d'Hopkinson (SHB) .22
Bibliographie .29
iii
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux
de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général
confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire
partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (IEC) en ce qui concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document a
été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir
www.iso.org/directives).
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable de ne
pas avoir identifié tout ou partie de tels droits de propriété. Les détails concernant les références aux droits
de propriété intellectuelle ou autres droits analogues identifiés lors de l'élaboration du présent document
sont indiqués dans l'Introduction et/ou dans la liste des déclarations de brevets reçues par l'ISO (voir
www.iso.org/patents).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données pour
information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion de
l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles techniques au
commerce (OTC), voir le lien suivant: www.iso.org/avant-propos.
Le présent document a été élaboré par le comité technique ISO/TC 164, Essais mécaniques des métaux, sous-
comité SC 1, Essais uniaxiaux, en collaboration avec le comité technique CEN/TC 459/SC 1, Méthodes d’essai
des aciers (autres que l'analyse chimique), du Comité européen de normalisation (CEN) conformément à
l’Accord de coopération technique entre l’ISO et le CEN (Accord de Vienne).
Cette troisième édition annule et remplace la deuxième édition (ISO 26203-1:2018), qui a fait l'objet d'une
révision technique.
Les principales modifications sont les suivantes:
— la modification de la note en 7.1;
— la note dans A.6 a été déplacée dans le corps du texte.
Une liste de toutes les parties de la série ISO 26203 est disponible sur le site Internet de l’ISO.
Il convient que l'utilisateur adresse tout retour d'information ou toute question concernant le présent
document à l'organisme national de normalisation de son pays. Une liste exhaustive desdits organismes se
trouve à l'adresse www.iso.org/fr/members.html.
iv
Introduction
Les essais de traction sur des matériaux métalliques en tôles à des vitesses de déformation élevées sont
importants pour obtenir une analyse fiable de la résistance aux chocs des véhicules. La plage de vitesses de
−3 3 −1
déformation comprise entre 10 et 10 s est considérée comme la plus pertinente pour les accidents de
véhicules, sur la base de calculs expérimentaux et numériques tels que l'analyse par éléments finis (FEA)
pour la résistance aux chocs. Afin d'évaluer avec précision la résistance aux chocs d'un véhicule, on utilise
généralement une caractérisation fiable de la contrainte-déformation des matériaux métalliques à des
−3 −1
vitesses de déformation supérieures à 10 s . Lors d'un accident, le taux de déformation maximal atteint
3 −1
souvent 10 s , auquel la résistance du matériau peut être nettement supérieure à celle obtenue dans des
conditions de charge quasi-statiques. La fiabilité de la simulation de collision dépend donc de la précision
des données d'entrée spécifiant la sensibilité des matériaux au taux de déformation.
Bien qu'il existe plusieurs méthodes pour les essais à vitesse de déformation élevée, des solutions sont
nécessaires pour traiter trois problèmes significatifs.
Le premier problème vient du bruit dans le signal de mesure de la force.
— La force d'essai est généralement détectée en un point de mesure sur le dispositif de mesure de la force,
situé à une certaine distance de l'éprouvette.
— De plus, l'onde élastique qui a déjà franchi le point de mesure y revient par réflexion à l'extrémité du
dispositif de mesure de la force. Si le temps d'essai est comparable au temps de propagation de l'onde au
travers du dispositif de mesure de la force, la courbe contrainte-déformation peut présenter de grandes
oscillations résultant de la superposition d'ondes directes et indirectes. Lors des essais quasi-statiques,
a contrario, le temps d'essai est suffisamment long pour qu'il y ait un grand nombre d'allers et retours de
l'onde élastique. De ce fait, la force atteint un état de saturation et s'équilibre en tout point du dispositif
de mesure de la force.
Il y a deux solutions opposées pour ce problème.
— L'une d'elles consiste à utiliser un dispositif de mesure de la force de courte longueur, ce qui permettra
d'atteindre l'état de saturation rapidement. Cette approche est souvent adoptée dans le système de type
servo-hydraulique.
— L'autre solution consiste à utiliser un dispositif de mesure de la force de très grande longueur, ce qui
permet de terminer un essai avant que l'onde réfléchie atteigne le point de mesure. Le système de type à
barre élastique est basé sur cette dernière approche.
Le deuxième problème est la nécessité de mesurages rapides et précis du déplacement ou de l'allongement
de l'éprouvette.
— Les extensomètres conventionnels ne conviennent pas du fait de leur grande inertie. Il convient d'utiliser
des méthodes de type sans contact, tels que dispositifs optiques ou à laser. Il est également acceptable
de mesurer les déplacements en utilisant la théorie de la propagation d'une onde élastique dans un
appareillage convenablement conçu, dont des exemples sont présentés dans le présent docu
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.