ISO 22017:2020
(Main)Water quality — Guidance for rapid radioactivity measurements in nuclear or radiological emergency situation
Water quality — Guidance for rapid radioactivity measurements in nuclear or radiological emergency situation
This document provides guidelines for testing laboratories wanting to use rapid test methods on water samples that may be contaminated following a nuclear or radiological emergency incident. In an emergency situation, consideration should be given to: — taking into account the specific context for the tests to be performed, e.g. a potentially high level of contamination; — using or adjusting, when possible, radioactivity test methods implemented during routine situations to obtain a result rapidly or, for tests not performed routinely, applying specific rapid test methods previously validated by the laboratory, e.g. for 89Sr determination; — preparing the test laboratory to measure a large number of potentially contaminated samples. The aim of this document is to ensure decision makers have reliable results needed to take actions quickly and minimize the radiation dose to the public. Measurements are performed in order to minimize the risk to the public by checking the quality of water supplies. For emergency situations, test results are often compared to operational intervention levels. NOTE Operational intervention levels (OILs) are derived from IAEA Safety Standards[8] or national authorities[9]. A key element of rapid analysis can be the use of routine methods but with a reduced turnaround time. The goal of these rapid measurements is often to check for unusual radioactivity levels in the test sample, to identify the radionuclides present and their activity concentration levels and to establish compliance of the water with intervention levels[10][11][12]. It should be noted that in such circumstances, validation parameters evaluated for routine use (e.g. reproducibility, precision, etc.) may not be applicable to the modified rapid method. However, due to the circumstances arising after an emergency, the modified method may still be fit-for-purpose although uncertainties associated with the test results need to be evaluated and may increase from routine analyses. The first steps of the analytical approach are usually screening methods based on gross alpha and gross beta test methods (adaptation of ISO 10704 and ISO 11704) and gamma spectrometry (adaptation of ISO 20042, ISO 10703 and ISO 19581). Then, if required[13], test method standards for specific radionuclides (see Clause 2) are adapted and applied (for example, 90Sr measurement according to ISO 13160) as proposed in Annex A. This document refers to published ISO documents. When appropriate, this document also refers to national standards or other publicly available documents. Screening techniques that can be carried out directly in the field are not part of this document.
Qualité de l'eau — Recommandations pour les mesurages rapides de la radioactivité en situation d'urgence nucléaire ou radiologique
Le présent document fournit des lignes directrices pour les laboratoires d'essai désireux d'utiliser des méthodes d'essai rapides sur des échantillons d'eau susceptibles d'être contaminés suite à une situation d'urgence nucléaire ou radiologique. Dans une situation d'urgence, il convient : — de prendre en compte le contexte spécifique des essais à effectuer, par exemple un niveau de contamination potentiellement élevé ; — d'utiliser ou d'ajuster, lorsque cela est possible, les méthodes d'essai pour la détermination de la radioactivité mises en œuvre dans des situations de routine pour obtenir rapidement un résultat ou, pour les essais non effectués dans des situations de routine, d'appliquer des méthodes d'essai rapides spécifiques préalablement validées par le laboratoire, par exemple pour la détermination de l'activité volumique de 89Sr ; — de préparer le laboratoire d'essai à mesurer un grand nombre d'échantillons potentiellement contaminés. Le présent document a pour objectif de s'assurer que les décideurs disposent de résultats fiables pour prendre des mesures rapidement et pour réduire au minimum la dose pour le public. Les mesurages sont effectués lors du contrôle de la qualité de l'eau des ressources d'eau afin de réduire au minimum le risque pour le public. Pour les situations d'urgence, les résultats d'essai sont souvent comparés aux niveaux opérationnels d'intervention. NOTE Les niveaux opérationnels d'intervention (NOI) proviennent des normes de sureté l'AIEA[8] ou des autorités nationales[9]. Un élément clé d'analyse rapide peut consister à utiliser les méthodes de routine mais dans un délai plus court. L'objectif de ces mesurages rapides est souvent de contrôler des niveaux de radioactivité inhabituels dans l'échantillon pour essai, d'identifier les radionucléides présents et leurs activités volumiques ainsi que d'établir la conformité de l'eau avec les niveaux d'intervention[10][11][12]. Il convient de noter que dans ces cas, les paramètres de validation évalués pour l'usage en routine (par exemple, reproductibilité, fidélité, etc.) ne sont pas nécessairement applicables à la méthode rapide modifiée. Cependant, en raison des conséquences découlant d'une situation d'urgence, la méthode modifiée peut rester adaptée à l'usage prévu, bien que les incertitudes associées aux résultats d'essai doivent être évaluées et puissent augmenter par rapport aux analyses de routine. Les premières étapes de la méthode d'analyse reposent généralement sur les méthodes d'essai des activités volumiques alpha globale et bêta globale considérées comme des méthodes de dépistage (adaptation de l'ISO 10704 et de l'ISO 11704) et sur la spectrométrie gamma (adaptation de l'ISO 20042, de l'ISO 10703 et de l'ISO 19581). Puis, si nécessaire[13], les normes sur les méthodes d'essai relatives à des radionucléides spécifiques (voir l'Article 2) sont adaptées et appliquées (par exemple, mesurage du 90Sr conformément à l'ISO 13160) comme cela est proposé à l'Annexe A. Le présent document fait référence à des documents ISO publiés. Le cas échéant, le présent document fait également référence à des normes nationales ou à d'autres documents publics disponibles. Les méthodes de dépistage qui peuvent être appliquées directement sur site ne font pas partie du présent document.
General Information
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 22017
First edition
2020-08
Water quality — Guidance for rapid
radioactivity measurements in
nuclear or radiological emergency
situation
Qualité de l'eau — Recommandations pour les mesurages rapides de
la radioactivité en situation d'urgence nucléaire ou radiologique
Reference number
©
ISO 2020
© ISO 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2020 – All rights reserved
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Guidance on emergency measurement . 4
4.1 Objective of a specific rapid measurement . 4
4.2 Routine screening levels versus intervention levels . 4
4.3 Operational intervention levels (OILs) from EU, USA and IAEA. 5
5 Rapid measurements . 5
5.1 Adaptation of the methods used . 5
5.2 Sampling . 6
5.3 Rapid test methods . 6
5.3.1 Pre-screening: Identification of most contaminated samples . 6
5.3.2 Selection of the analytical strategy . 6
5.3.3 Appropriate sample volumes and counting times related to intervention levels . 9
5.3.4 Gross-alpha and gross-beta determination and gamma spectrometry .10
5.3.5 Specific separations for alpha emitters or pure beta emitters measurement .11
6 Laboratory management to perform rapid measurements .12
6.1 Protection of laboratory staff .12
6.2 Sample management.12
6.3 Material and staff .12
6.4 Quality management .13
6.5 Expression of results and test report .13
Annex A (informative) World Health Organization screening for radionuclides in drinking
water .14
Annex B (informative) Operational Intervention Levels (OILs) from EU, US and IAEA .15
Annex C (informative) Overview of different types of rapid measurements during a nuclear
or radiological emergency.16
Annex D (informative) Example of a decision scheme for rapid measurements in the early
phase .18
Bibliography .19
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following
URL: www .iso .org/ iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 147, Water quality, SC 3, Radioactivity
measurements.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2020 – All rights reserved
Introduction
Radioactivity from several naturally-occurring and anthropogenic sources is present throughout
the environment. Thus, water bodies (e.g. surface waters, ground waters, sea waters) can contain
radionuclides of natural, human made, or both origins:
40 3 14
— Natural radionuclides, including K, H, C, and those originating from the thorium and uranium
226 228 234 238 210 210
decay series, in particular Ra, Ra, U, U, Po and Pb can be found in water for
natural reasons (e.g. desorption from the soil and wash off by rain water) or can be released from
technological processes involving naturally occurring radioactive materials (e.g. the mining and
processing of mineral sands or phosphate fertilizers production and use);
— Human-made radionuclides such as transuranium elements (americium, plutonium, neptunium and
3 14 90
curium), H, C, Sr, and some gamma emitting radionuclides can also be found in natural waters.
Small quantities of these radionuclides may be discharged from nuclear fuel cycle facilities into
the environment as the result of authorized routine releases. Some of these radionuclides used for
medical and industrial applications are also released into the environment after use. Anthropogenic
radionuclides are also found in waters as the result of past fallout contaminations resulting from
the explosion in the atmosphere of nuclear devices and accidents such as those that occurred in
Chernobyl and Fukushima.
Radionuclide activity concentration in water bodies can vary according to local geological
characteristics and climatic conditions and can be locally and temporally enhanced by releases from
[1]
nuclear installation during planned, existing, and emergency exposure situations . Drinking-water
may thus contain radionuclides at activity concentrations which could present a risk to human health.
The radionuclides present in liquid effluents are usually controlled before being discharged into
[2]
the environment and water bodies. Drinking waters are monitored for their radioactivity as
[3]
recommended by the World Health Organization (WHO) so that proper actions can be taken to ensure
that there is no adverse health effect to the public. Following these international recommendations,
national regulations usually specify radionuclide authorized concentration limits for liquid effluent
discharged to the environment and radionuclide guidance levels for waterbodies and drinking waters
for planned, existing, and emergency exposure situations. Compliance with these limits can be assessed
using measurement results with their associated uncertainties as requested by ISO/IEC Guide 98-3
[4]
and ISO 5667-20 .
Depending of the exposure situation, there are different limits and guidance levels that would result in
an action to reduce health risk.
-1
NOTE 1 The guidance level is the activity concentration with an intake of 2 ld of drinking water for one year,
-1
that results in an effective dose of 0,1 mSva for members of the public. This is an effective dose that represents
[3]
a very low level of risk that is not expected to give rise to any detectable adverse health effect .
[5]
In the event of a nuclear emergency, the WHO Codex Guideline Levels indicates the activity
concentrations corresponding to operational intervention levels.
NOTE 2 The Codex guidelines levels (GLs) apply to radionuclides contained in foods destined for human
consumption and traded internationally, which have been contaminated following a nuclear or radiological
emergency. These GLs apply to food after reconstitution or as prepared for consumption, i.e. not to dried or
concentrated foods, and are based on an intervention exemption level of 1 mSv in a year for members of the
[5]
public (infant and adult) .
Thus, the test method can be adapted so that the characteristic limits, decision threshold and detection
limit, and the uncertainties ensure that the radionuclide activity concentration test results can be
verified to be below the guidance levels required by a national authority for either planned-existing
[6][7]
situations or an emergency situation .
Usually, the test methods can be adjusted to measure the activity concentration of the radionuclide(s)
in either wastewaters before storage or in liquid effluents before being discharged to the environment.
The test results will enable the plant/installation operator to verify that, before their discharge,
wastewaters/liquid effluent radioactive activity concentrations do not exceed authorized limits.
The test methods described in this document for emergency exposure situations may also be used
during planned, existing exposure situations as well as for wastewaters and liquid effluents with
specific modifications that could change the overall uncertainty, detection limit, and threshold.
The test method(s) may be used for water samples after proper sampling, sample handling, and test
sample preparation (see the relevant part of ISO 5667 series).
This document has been developed to answer the need of test laboratories carrying out these
measurements that may be required by national authorities during a nuclear or radiological emergency
exposure situation.
This document is one of a set of International Standards on test methods dealing with the measurement
of the activity concentration of radionuclides in water samples.
The ISO documents produced for radioactivity measurements in water are detailed methods. In most
cases, these methods have been used in laboratory practice for a number of years and the analytical
characteristics have been documented. However, these methods are generally time consuming and
require well trained analysts to carry them out.
Over the last years, an increasing need was recognized for the addition of guidance on the use of so-
called “rapid methods”. The nuclear accident at Fukushima in March 2011 accentuated the need for
these rapid measurements. During the initial stages of such incidents, decision makers had to deal with
taking protective measures for the population, such as sheltering, evacuation, and the distribution
of iodine prophylaxis. It has been found that time is critical and limited for taking these protective
measures.
vi © ISO 2020 – All rights reserved
INTERNATIONAL STANDARD ISO 22017:2020(E)
Water quality — Guidance for rapid radioactivity
measurements in nuclear or radiological emergency
situation
1 Scope
This document provides guidelines for testing laboratories wanting to use rapid test methods on
water samples that may be contaminated following a nuclear or radiological emergency incident. In an
emergency situation, consideration should be given to:
— taking into account the specific context for the tests to be performed, e.g. a potentially high level of
contamination;
— using or adjusting, when possible, radioactivity test methods implemented during routine situations
to obtain a result rapidly or, for tests not performed routinely, applying specific rapid test methods
previously validated by the laboratory, e.g. for Sr determination;
— preparing the test laboratory to measure a large number of potentially contaminated samples.
The aim of this document is to ensure decision makers have reliable results needed to take actions
quickly and minimize the radiation dose to the public.
Measurements are performed in order to minimize the risk to the public by checking the quality of water
supplies. For emergency situations, test results are often compared to operational intervention levels.
[8]
NOTE Operational intervention levels (OILs) are derived from IAEA Safety Standards or national
[9]
authorities .
A key element of rapid analysis can be the use of routine methods but with a reduced turnaround time.
The goal of these rapid measurements is often to check for unusual radioactivity levels in the test sample,
to identify the radionuclides present and their activity concentration levels and to establish compliance
[10][11][12]
of the water with intervention levels . It should be noted that in such circumstances, validation
parameters evaluated for routine use (e.g. reproducibility, precision, etc.) may not be applicable to the
modified rapid method. However, due to the circumstances arising after an emergency, the modified
method may still be fit-for-purpose although uncertainties associated with the test results need to be
evaluated and may increase from routine analyses.
The first steps of the analytical approach are usually screening methods based on gross alpha and
gross beta test methods (adaptation of ISO 10704 and ISO 11704) and gamma spectrometry (adaptation
[13]
of ISO 20042, ISO 10703 and ISO 19581). Then, if required , test method standards for specific
radionuclides (see Clause 2) are adapted and applied (for example, Sr measurement according to
ISO 13160) as proposed in Annex A.
This document refers to published ISO documents. When appropriate, this document also refers to
national standards or other publicly available documents.
Screening techniques that can be carried out directly in the field are not part of this document.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 9696, Water quality — Gross alpha activity — Test method using thick source
ISO 9697, Water quality — Gross beta activity — Test method using thick source
ISO 9698, Water quality — Tritium — Test method using liquid scintillation counting
ISO 10703, Water quality — Determination of the activity concentration of radionuclides — Method by
high resolution gamma-ray spectrometry
ISO 10704, Water quality — Gross alpha and gross beta activity — Test method using thin source deposit
ISO 11704, Water quality — Gross alpha and gross beta activity — Test method using liquid scintillation
counting
ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
ISO 13160, Water quality — Strontium 90 and strontium 89 — Test methods using liquid scintillation
counting or proportional counting
ISO 13161, Water quality — Measurement of polonium 210 activity concentration in water by alpha
spectrometry
ISO 13162, Water quality — Determination of carbon 14 activity — Liquid scintillation counting method
ISO 13163, Water quality — Lead-210 — Test method using liquid scintillation counting
ISO 13165-1, Water quality — Radium-226 — Part 1: Test method using liquid scintillation counting
ISO 13165-2, Water quality — Radium-226 — Part 2: Test method using emanometry
ISO 13165-3, Water quality — Radium-226 — Part 3: Test method using coprecipitation and gamma-
spectrometry
ISO 13166, Water quality — Uranium isotopes — Test method using alpha-spectrometry
ISO 13167, Water quality — Plutonium, americium, curium and neptunium — Test method using alpha
spectrometry
ISO 13168, Water quality — Simultaneous determination of tritium and carbon 14 activities — Test method
using liquid scintillation counting
ISO 17294-2, Water quality — Application of inductively coupled plasma mass spectrometry (ICP-MS) —
Part 2: Determination of selected elements including uranium isotopes
ISO 19581, Measurement of radioactivity — Gamma emitting radionuclides — Rapid screening method
using scintillation detector gamma-ray spectrometry
ISO 20042, Measurement of radioactivity — Gamma-ray emitting radionuclides — Generic test method
using gamma-ray spectrometry
3 Terms and definitions
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at http:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
For the purposes of this document, the following terms and definitions apply.
2 © ISO 2020 – All rights reserved
3.1
emergency situation
non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or
adverse consequences for human health and safety, quality of life, property or the environment
Note 1 to entry: This includes nuclear and radiological emergencies and conventional emergencies such as
fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is
[14]
warranted to mitigate the effects of a perceived hazard .
3.2
intervention
any protective action or countermeasure aimed at reducing, or averting, human exposure to radiation
during a nuclear or radiological emergency
3.3
operational intervention level
OIL
set level of a measurable quantity that corresponds to a generic criterion
Note 1 to entry: OILs are calculated levels, measured by instruments or determined by laboratory analysis
that correspond to an intervention level or action level. These are typically expressed in terms of dose rates
or of activity of radioactive material released, time integrated air activity concentrations, ground or surface
concentrations, or activity concentrations of radionuclides in environmental, food or water samples. OILs are
used immediately and directly (without further assessment) to determine the appropriate protective actions on
[14]
the basis of an environmental measurement .
[SOURCE: IAEA safety glossary 2016 Rev. Mod]
3.4
reference level
level of dose or risk, in emergency or existing controllable exposure situations, above which it is judged
to be inappropriate to allow exposures to occur, and below which optimisation of protection should be
implemented
Note 1 to entry: Note1 to entry: The chosen value for a reference level depends upon the prevailing circumstances
[8][9]
of the exposure under consideration .
3.5
screening level
SL
value that takes into account the characteristics of the measuring equipment and the test method to
guarantee that the test results and their uncertainties obtained are fit for purpose for comparison with
the operational intervention levels (OILs) (3.3)
Note 1 to entry: For example, when the screening levels are not exceeded, the OILs are also note exceeded, and
the water is considered safe for consumption. If the screening level is exceeded so is the OIL and consumption of
non-essential food should be stopped, and essential food should be replaced or the people should be relocated if
[13][14]
replacements are not available .
3.6
intervention level
radiation dose above which a specific protective action is generally justified
3.7
iodine prophylaxis
administration of stable iodine to limit the uptake of inhaled/ingested radioactive iodine into the
thyroid gland
3.8
emergency exposure situation
situation of exposure where exposure at an elevated level is inevitable due to unexpected events or
needs of important action
4 Guidance on emergency measurement
4.1 Objective of a specific rapid measurement
The type of nuclear or radiological emergency and the initial measurement results provide information
on the nature and amount of radionuclide that has been released.
In the early phase, rapid measurements can be performed for screening, e.g. to determine whether the
sample is significantly contaminated or not.
In the intermediate phase, rapid measurements can be carried out to confirm the nature and activity
concentration of the radionuclide(s) in the water samples.
When the radionuclides are known, a rapid measurement should be able to determine if the activity
concentration(s) measured exceeded the OIL values or not.
In the recovery phase of an emergency situation, when a number of protective measures have been
taken in order to minimize the dose to the public, measurements are also performed to verify the
necessity of these protective measures, such as evacuation, emergency sheltering, food restriction, and
providing iodine prophylaxis to members of the public.
Decision trees are usually used to determine which test methods should be applied. These methods
are often routine test methods in use in testing laboratories, with instructions on how to adapt them
during an emergency situation, or existing ISO documents.
A general overview of the higher priorities to address, for each phase of a nuclear emergency and the
rationale behind these priorities are shown in Table 1. The relative priority of these issues depend on
the type and scale of the nuclear or radiological emergency situation.
Table 1 — Overview of the higher priorities to address for each phase of a nuclear emergency
and the rationale behind these priorities
Phases High priorities Main concerns for water
Early phase Radionuclide identification, global pic- Protective measures for public,
(first days) ture livestock, agriculture, water.
of geographic extent of the
contamination.
Intervention levels exceeded?
Intermediate phase Large number of samples, detailed Evaluate the taken countermeasures with
(days — weeks) picture of contaminated area. measurement data.
Focus on food chain and water. May people return to their homes?
Evaluation of areas where intervention Is food safe to eat? Is water safe to drink?
levels are exceeded. Monitoring and sampling in large areas,
agricultural and urban.
Recovery phase More detailed sampling and analyses with Continue monitoring and sampling more in
(weeks — months) lower detection limits for food and water. depth in agricultural and urban areas: Food
chain and water reservoirs, surface waters.
4.2 Routine screening levels versus intervention levels
In normal situations, the World Health Organization (WHO) has defined routine screening levels for
−1
drinking water, below which no further action is required. These screening levels are 0,5 Bq·l for
−1
gross alpha activity and 1 Bq·l for gross beta activity. If neither of these values is exceeded, the total
−1
indicative dose of 0,1 mSv·y is also not exceeded.
In case of an emergency situation, intervention levels are defined and expressed in terms of a dose limit
−1 −1 −1
per unit of time (e.g. mSv·d , mSv·w or mSv·a ). They are used by policy makers to decide on actions
in order to protect people against high radiation levels. When these intervention levels are exceeded,
appropriate actions are carried out following national emergency handbooks or protocols.
4 © ISO 2020 – All rights reserved
−1 −3
Operational intervention levels (OILs) are usually expressed in activity concentration (Bq·l , Bq.m
−1
or Bq.kg ). Rapid measurements performed following an emergency situation should produce test
results which can be related to OILs.
If required, the conversion from activity to dose to compare with intervention levels should be carried
out by experienced scientific staff. For contaminated water, intervention levels are related to ingestion,
washing, showering or cooking. Here the conversion from activity concentration in drinking water to
dose is done by multiplying the activity concentration by the dose conversion coefficient (for ingestion)
and an approximation of the water consumption per unit time.
Intervention levels may vary from one country to another. In this document, data from the EU and the
USA are given as examples in Annex B. Other states may apply their own national intervention levels.
Sample measurement data are used for decision making based on the assessment of the confidence
that water quality meets given targets, complies with thresholds or lies in a particular range in a
classification system.
Principles, basic requirements, and illustrative methods for decision making are described in
Reference [14], including methods for preliminary examination of the sensitivity of decisions to error
and uncertainty.
4.3 Operational intervention levels (OILs) from EU, USA and IAEA
[9] [11][12]
OILs for the USA and the EU are listed in Annex B. In emergency situations, a higher
contamination level is accepted for a short period of time, days or weeks.
−1 −1
These levels range up to 500 Bq·l for iodine isotopes and to 1 200 Bq·l for gamma-emitting isotopes,
134 137
such as Cs and Cs. It is clear that rapid measurements should be able to determine these activity
concentrations readily.
[8]
The IAEA defines a slightly different set of OILs . These OILs are threshold values of concentrations
in food, milk or water that warrant the consideration of restrictions on consumption so as to keep the
effective dose to any person below 10 mSv per year.
Following the early phase, the OIL values could be revised rapidly by authorities to come back to usual
reference values. In such a case, the laboratories would revert to usual laboratory test methods and
equipment.
5 Rapid measurements
5.1 Adaptation of the methods used
In the early phase, turnaround time is a very important factor. Other factors considered as primary
in routine situations could become of secondary importance. Time-consuming radiological procedures
should be avoided in the early phase and intermediate phase. In some cases, the testing laboratory
shall apply specific, non-routine, rapid measurement methods. These methods should be validated
in advance. As a rule, where possible, rapid methods should be based on routine test methods as the
laboratory team is already trained to use them and their analytical characteristics are well known.
An optimization of these methods may be based on a smaller size of the sample test portion, simpler
radiochemical treatment, and a shorter counting time.
The following test methods, usually performed in routine situations, shall be used and adapted:
ISO 9696, ISO 9697, ISO 9698, ISO 10703, ISO 10704, ISO 11704, ISO 13160, ISO 13161, ISO 13162,
ISO 13163, ISO 13165-1, ISO 13165-2, ISO 13165-3, ISO 13166, ISO 13167, ISO 13168, ISO 17294-2,
ISO 19581 and ISO 20042.
5.2 Sampling
[15]
Guidance for sampling and conservation of water samples can be found in the ISO 5667 series . Apply
ISO 5667-3 for the conservation and preservation of water samples.
A procedure for developing a sampling and measuring strategy for a quick estimation of the
contaminated area is given in Reference [16]. This may be achieved by combining measurements with
hand-held gamma- (or alpha/beta-) monitors with data obtained with gamma spectrometry, or alpha/
beta-counting techniques.
The type of nuclear and radiological emergency situation and the first measurements give the initial
information on the nuclide or nuclide mix that could have contaminated the water bodies. Screening
techniques should be applied using this information.
Carry out sampling in order to identify the radionuclide or mix of radionuclides, and their activity
concentration levels. In general, the sampling strategy should be directed to test the compliance with
the OILs.
The sampling strategy should be oriented to address the following questions:
1) Is tap water likely to be contaminated? If so, are people likely to be contaminated through drinking
water, washing or cooking?
2) Which nuclide(s) cause(s) the contamination?
3) How
...
NORME ISO
INTERNATIONALE 22017
Première édition
2020-08
Qualité de l'eau — Recommandations
pour les mesurages rapides de la
radioactivité en situation d'urgence
nucléaire ou radiologique
Water quality — Guidance for rapid radioactivity measurements in
nuclear or radiological emergency situation
Numéro de référence
©
ISO 2020
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2020
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2020 – Tous droits réservés
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives . 2
3 Termes et définitions . 3
4 Recommandations relatives au mesurage d’urgence. 4
4.1 Objectif d’un mesurage rapide spécifique . 4
4.2 Niveaux de dépistage de routine en fonction des niveaux d’intervention . 5
4.3 Niveaux opérationnels d’intervention (NOI) de l’UE, des États-Unis et de l’AIEA . 5
5 Mesurages rapides . 6
5.1 Adaptation des méthodes utilisées . 6
5.2 Échantillonnage . 6
5.3 Méthodes d’essai rapides . 7
5.3.1 Dépistage : identification des échantillons hautement contaminés . 7
5.3.2 Sélection de la stratégie analytique . 7
5.3.3 Volumes d’échantillons appropriés et durées de comptage associées aux
niveaux d’intervention .10
5.3.4 Détermination de l’activité alpha globale et bêta globale et spectrométrie
gamma . . .10
5.3.5 Séparations spécifiques pour le mesurage des émetteurs alpha ou des
émetteurs bêta purs .12
6 Gestion du laboratoire pour effectuer des mesurages rapides .12
6.1 Protection du personnel de laboratoire .12
6.2 Gestion des échantillons .12
6.3 Matériel et personnel .13
6.4 Management de la qualité .13
6.5 Expression des résultats et rapport d’essai .14
Annexe A (informative) Dépistage des radionucléides présents dans l’eau de boisson
préconisé par l’Organisation mondiale de la santé .15
Annexe B (informative) Niveaux opérationnels d’intervention (NOI) de l’UE, des États-Unis
et de l’AIEA .17
Annexe C (informative) Vue d’ensemble des différents types de mesurages rapides pendant
une urgence nucléaire ou radiologique .18
Annexe D (informative) Exemple de schéma décisionnel pour les mesurages rapides lors de
la première phase d’urgence .20
Bibliographie .21
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/ directives).
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www .iso .org/ brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, de la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute autre information au sujet de
l’adhésion de l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les
obstacles techniques au commerce (OTC) voir le lien suivant : www .iso .org/ iso/ fr/ avant -propos .html.
— Le présent document a été élaboré par le comité technique ISO/TC 147, Qualité de l’eau, sous-comité
SC 3, Mesurages de la radioactivité.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www .iso .org/ members .html.
iv © ISO 2020 – Tous droits réservés
Introduction
La radioactivité, provenant de diverses sources naturelles et anthropiques, est présente partout dans
l’environnement. Les masses d’eau (par exemple, eaux de surface, eaux souterraines, eaux de mer)
peuvent donc contenir des radionucléides d’origine naturelle et/ou engendrés par l’Homme :
— les radionucléides naturels, y compris le potassium 40, le tritium, le carbone 14 et ceux provenant
des chaînes de désintégration du thorium et de l’uranium, en particulier le radium 226, le radium
228, l’uranium 234, l’uranium 238, le polonium et le plomb 210, peuvent être retrouvés dans l’eau
pour des raisons naturelles (par exemple, désorption par le sol et lessivage par les eaux pluviales) ou
peuvent être rejetés par des procédés technologiques impliquant des matières radioactives existant
à l’état naturel (par exemple, extraction minière et traitement de sables minéraux, ou production et
utilisation d’engrais phosphatés) ;
— les radionucléides artificiels tels que les éléments transuraniens (américium, plutonium, neptunium
et curium), le tritium, le carbone 14, le strontium 90 et certains radionucléides émetteurs gamma
peuvent également être retrouvés dans les eaux naturelles. En raison d’éventuels rejets réguliers
autorisés, de faibles quantités de ces radionucléides sont rejetées dans l’environnement par les
installations du cycle du combustible nucléaire. Certains de ces radionucléides, employés dans des
applications médicales et industrielles, sont également rejetés dans l’environnement après usage.
Il est également possible de retrouver des radionucléides anthropiques dans les eaux suite à une
contamination passée, due aux retombées de l’explosion d’engins nucléaires dans l’atmosphère et
d’accidents nucléaires tels que ceux qui se sont produits à Tchernobyl et Fukushima.
L’activité volumique d’un radionucléide dans les masses d’eau peut varier selon les caractéristiques
géologiques locales et les conditions climatiques ; elle peut localement et temporairement être accrue
suite aux rejets par des installations nucléaires dans des situations d’exposition prévues, existantes
[1]
et d’urgence . L’eau potable peut alors contenir des radionucléides à des niveaux d’activité volumique
pouvant représenter un risque pour la santé humaine.
Les radionucléides présents dans les effluents liquides sont généralement contrôlés avant d’être
[2]
rejetés dans l’environnement et les masses d’eau. La radioactivité des eaux potables est contrôlée,
[3]
comme le recommande l’Organisation mondiale de la santé (OMS) . Cela permet de mener des
actions appropriées pour s’assurer de l’absence d’effets nocifs sur la santé publique. Conformément à
ces recommandations internationales, les limites de concentration en radionucléides autorisées pour
les effluents liquides rejetés dans l’environnement et les niveaux de référence de radionucléides pour
les masses d’eau et les eaux potables sont généralement spécifiés par des réglementations nationales
applicables dans des situations d’exposition prévues, existantes et d’urgence. Le respect de ces limites
peut être déterminé à l’aide de résultats de mesure assortis de leurs incertitudes respectives, comme
[4]
exigé par l’ISO/IEC Guide 98-3 et l’ISO 5667-20 .
Selon la situation d’exposition, les limites autorisées et les niveaux de référence, qui aboutiraient à une
action visant à réduire le risque pour la santé, diffèrent.
NOTE 1 Le niveau de référence pour les membres du public est l’activité volumique correspondant à une
-1
consommation de 2 ld d’eau potable par jour pendant une année, donnant une dose efficace de 0,1 mSv/an, ce
[3]
qui représente un très faible niveau de risque d’engendrer des effets nocifs pour la santé détectables .
[5]
Dans une situation d’urgence nucléaire, les niveaux de référence du Codex de l’OMS indiquent les
activités volumiques correspondant aux niveaux opérationnels d’intervention.
NOTE 2 Les niveaux de référence (NR) du Codex s’appliquent aux radionucléides contenus dans les aliments
destinés à la consommation humaine et commercialisés dans le monde, qui ont été contaminés suite à une
urgence nucléaire ou radiologique. Ces NR s’appliquent aux aliments après reconstitution ou tels que préparés
pour la consommation, mais pas aux aliments séchés ou concentrés, et reposent sur un niveau d’exemption
[5]
d’intervention de 1 mSv en une année pour le public (enfants et adultes) .
Les méthodes d’essai doivent donc être adaptées de sorte que leurs limites caractéristiques, leur seuil
de décision, leur limite de détection et les incertitudes associées assurent que les résultats d’essai de
l’activité volumique des radionucléides permettent de vérifier que celle-ci est inférieure aux niveaux
recommandés requis par l’autorité nationale pour les situations prévues/existantes ou une situation
[6][7]
d’urgence .
Généralement, les méthodes d’essai peuvent être adaptées pour mesurer l’activité volumique d’un ou
de plusieurs radionucléides dans les eaux usées avant stockage ou dans les effluents liquides avant
rejet dans l’environnement. Les résultats d’essai permettront à l’exploitant de l’installation industrielle
de se conformer aux réglementations nationales en vérifiant, avant rejet, que les activités volumiques
d’éléments radioactifs dans les eaux usées/effluents liquides sont inférieures aux limites autorisées.
Les méthodes d’essai décrites dans le présent document pour les situations d’exposition d’urgence
peuvent également être utilisées au cours de situations d’exposition prévues, existantes ainsi que pour
les eaux usées et les effluents liquides avec des modifications spécifiques susceptibles de modifier
l’incertitude globale, la limite de détection et le seuil.
La ou les méthode(s) d’essai peu(ven)t être utilisée(s) pour des échantillons d’eau après échantillonnage,
manipulation de l’échantillon et préparation de l’échantillon pour essai (voir la partie correspondante
de la série ISO 5667).
Le présent document a été élaboré pour répondre au besoin des laboratoires d’essai effectuant
ces mesurages qui peuvent être requis par les autorités nationales dans une situation d’exposition
d’urgence nucléaire ou radiologique.
Le présent document fait partie d’une série de Normes internationales sur les méthodes d’essai relatives
au mesurage de l’activité volumique des radionucléides dans les échantillons d’eau.
Les documents ISO élaborés pour les mesurages de la radioactivité dans l’eau sont des méthodes détaillées.
Dans la plupart des cas, ces méthodes sont couramment mises en pratique depuis plusieurs années dans
les laboratoires, et leurs caractéristiques analytiques sont documentées. Cependant, ces méthodes sont
généralement chronophages et nécessitent des analystes qualifiés pour les mettre en œuvre.
Ces dernières années, la nécessité d’ajouter des recommandations relatives à l’utilisation de « méthodes
rapides » s’est accentuée. L’accident nucléaire qui s’est produit à Fukushima en mars 2011 a accentué
la nécessité de ces mesurages rapides. Aux prémices de ces incidents, les décideurs ont dû prendre des
mesures de protection de la population, notamment la mise à l’abri, l’évacuation et la distribution de
comprimés d’iode. Il est apparu que la durée nécessaire pour prendre ces mesures de protection est
cruciale et limitée.
vi © ISO 2020 – Tous droits réservés
NORME INTERNATIONALE ISO 22017:2020(F)
Qualité de l'eau — Recommandations pour les mesurages
rapides de la radioactivité en situation d'urgence nucléaire
ou radiologique
1 Domaine d’application
Le présent document fournit des lignes directrices pour les laboratoires d’essai désireux d’utiliser des
méthodes d’essai rapides sur des échantillons d’eau susceptibles d’être contaminés suite à une situation
d’urgence nucléaire ou radiologique. Dans une situation d’urgence, il convient :
— de prendre en compte le contexte spécifique des essais à effectuer, par exemple un niveau de
contamination potentiellement élevé ;
— d’utiliser ou d’ajuster, lorsque cela est possible, les méthodes d’essai pour la détermination de la
radioactivité mises en œuvre dans des situations de routine pour obtenir rapidement un résultat
ou, pour les essais non effectués dans des situations de routine, d’appliquer des méthodes d’essai
rapides spécifiques préalablement validées par le laboratoire, par exemple pour la détermination de
l’activité volumique de Sr ;
— de préparer le laboratoire d’essai à mesurer un grand nombre d’échantillons potentiellement
contaminés.
Le présent document a pour objectif de s’assurer que les décideurs disposent de résultats fiables pour
prendre des mesures rapidement et pour réduire au minimum la dose pour le public.
Les mesurages sont effectués lors du contrôle de la qualité de l’eau des ressources d’eau afin de réduire
au minimum le risque pour le public. Pour les situations d’urgence, les résultats d’essai sont souvent
comparés aux niveaux opérationnels d’intervention.
[8]
NOTE Les niveaux opérationnels d’intervention (NOI) proviennent des normes de sureté l’AIEA ou des
[9]
autorités nationales .
Un élément clé d’analyse rapide peut consister à utiliser les méthodes de routine mais dans un délai
plus court. L’objectif de ces mesurages rapides est souvent de contrôler des niveaux de radioactivité
inhabituels dans l’échantillon pour essai, d’identifier les radionucléides présents et leurs activités
[10][11][12]
volumiques ainsi que d’établir la conformité de l’eau avec les niveaux d’intervention . Il convient
de noter que dans ces cas, les paramètres de validation évalués pour l’usage en routine (par exemple,
reproductibilité, fidélité, etc.) ne sont pas nécessairement applicables à la méthode rapide modifiée.
Cependant, en raison des conséquences découlant d’une situation d’urgence, la méthode modifiée peut
rester adaptée à l’usage prévu, bien que les incertitudes associées aux résultats d’essai doivent être
évaluées et puissent augmenter par rapport aux analyses de routine.
Les premières étapes de la méthode d’analyse reposent généralement sur les méthodes d’essai des
activités volumiques alpha globale et bêta globale considérées comme des méthodes de dépistage
(adaptation de l’ISO 10704 et de l’ISO 11704) et sur la spectrométrie gamma (adaptation de l’ISO 20042,
[13]
de l’ISO 10703 et de l’ISO 19581). Puis, si nécessaire , les normes sur les méthodes d’essai relatives à
des radionucléides spécifiques (voir l’Article 2) sont adaptées et appliquées (par exemple, mesurage du
Sr conformément à l’ISO 13160) comme cela est proposé à l’Annexe A.
Le présent document fait référence à des documents ISO publiés. Le cas échéant, le présent document
fait également référence à des normes nationales ou à d’autres documents publics disponibles.
Les méthodes de dépistage qui peuvent être appliquées directement sur site ne font pas partie du
présent document.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu’ils constituent, pour tout ou partie de leur
contenu, des exigences du présent document. Pour les références datées, seule l’édition citée s’applique.
Pour les références non datées, la dernière édition du document de référence s’applique (y compris les
éventuels amendements).
ISO 9696, Water quality — Gross alpha activity — Test method using thick source
ISO 9697, Water quality — Gross beta activity — Test method using thick source
ISO 9698, Water quality — Tritium — Test method using liquid scintillation counting
ISO 10703, Qualité de l’eau — Détermination de l’activité volumique des radionucléides — Méthode par
spectrométrie gamma à haute résolution
ISO 10704, Water quality — Gross alpha and gross beta activity — Test method using thin source deposit
ISO 11704, Water quality — Gross alpha and gross beta activity — Test method using liquid scintillation
counting
ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
ISO 13160, Qualité de l’eau — Strontium 90 et strontium 89 — Méthodes d’essai par comptage des
scintillations en milieu liquide ou par comptage proportionnel
ISO 13161, Water quality — Polonium 210 — Test method using alpha spectrometry
ISO 13162, Qualité de l’eau — Détermination de l’activité volumique du carbone 14 — Méthode par
comptage des scintillations en milieu liquide
ISO 13163, Qualité de l’eau — Plomb 210 — Méthode d’essai par comptage des scintillations en milieu liquide
ISO 13165-1, Qualité de l’eau — Radium 226 — Partie 1 : Méthode d’essai par comptage des scintillations
en milieu liquide
ISO 13165-2, Water quality — Radium-226 — Part 2: Test method using emanometry
ISO 13165-3, Water quality — Radium-226 — Part 3: Test method using coprecipitation and gamma-
spectrometry
ISO 13166, Water quality — Uranium isotopes — Test method using alpha-spectrometry
ISO 13167, Water quality — Plutonium, americium, curium and neptunium — Test method using alpha
spectrometry
ISO 13168, Water quality — Simultaneous determination of tritium and carbon 14 activities — Test method
using liquid scintillation counting
ISO 17294-2, Water quality — Application of inductively coupled plasma mass spectrometry (ICP-MS) —
Part 2: Determination of selected elements including uranium isotopes
ISO 19581, Measurement of radioactivity — Gamma emitting radionuclides — Rapid screening method
using scintillation detector gamma-ray spectrometry
ISO 20042, Measurement of radioactivity — Gamma-ray emitting radionuclides — Generic test method
using gamma-ray spectrometry
2 © ISO 2020 – Tous droits réservés
3 Termes et définitions
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes :
— ISO Online browsing platform : disponible à l’adresse https:// www .iso .org/ obp
— IEC Electropedia : disponible à l’adresse http:// www .electropedia .org/
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
3.1
situation d’urgence
situation ou événement inhabituel(le) qui nécessite une action rapide, principalement pour atténuer
un danger ou des conséquences néfastes pour la santé et la sécurité des personnes, la qualité de vie, les
biens ou l’environnement
Note 1 à l'article: Ceci inclut les situations d’urgence nucléaires et radiologiques ainsi que les situations d’urgence
habituelles telles que les incendies, le rejet de produits chimiques dangereux, les tempêtes ou les séismes. Sont
incluses les situations dans lesquelles il est justifié d’entreprendre une action rapide pour atténuer les effets d’un
[14]
danger perçu .
3.2
intervention
action ou contre-mesure de protection visant à réduire ou prévenir l’exposition des individus aux
rayonnements pendant une urgence nucléaire ou radiologique
3.3
niveau opérationnel d’intervention
NOI
niveau défini d’une grandeur mesurable qui correspond à un critère générique
Note 1 à l'article: Les NOI sont des niveaux calculés, mesurés à l’aide d’instruments ou déterminés par analyse
en laboratoire, qui correspondent à un niveau d’intervention ou à un niveau d’action. Ils sont habituellement
exprimés en termes de débits de dose ou d’activité de matières radioactives rejetées, d’activités volumiques
dans l’air intégrées sur le temps, de concentrations sur le sol ou les surfaces, ou d’activités volumiques des
radionucléides dans des échantillons d’environnement, d’aliment ou d’eau. Les NOI sont utilisés immédiatement
et directement (sans autre évaluation) pour déterminer les actions protectrices appropriées sur la base d’un
[14]
mesurage environnemental .
[SOURCE: : Glossaire de sûreté de l'AIEA 2016 Rév. Mod]
3.4
niveau de référence
niveau de dose ou de risque, dans des situations d’urgence ou d’exposition contrôlable existantes, au-
dessus duquel il est jugé inapproprié de permettre des expositions et au-dessous duquel l’optimisation
de la protection convient d’être mise en œuvre
Note 1 à l'article: La valeur choisie pour un niveau de référence dépend des circonstances de l’exposition
[8][9]
étudiée .
3.5
niveau de dépistage
ND
valeurs tenant compte des caractéristiques de l’équipement de mesure et de la méthode d’essai pour
garantir que le résultat d’essai et son incertitudes obtenue sont adaptés à la comparaison avec les
niveaux opérationnels d’intervention (NOI) (3.3)
Note 1 à l'article: Par exemple, lorsque les niveaux de dépistage ne sont pas dépassés, les NOI ne le sont pas non
plus et l’eau est considérée propre à la consommation. Si le niveau de dépistage est dépassé, le NOI l’est aussi
et il convient de ne plus consommer l’aliment non essentiel et de remplacer l’aliment essentiel ou il convient de
[13][14]
relocaliser les individus si les remplacements ne sont pas possibles .
3.6
niveau d’intervention
dose de rayonnement au-dessus de laquelle une action protectrice est généralement justifiée
3.7
prophylaxie iodée
administration d’iode stable pour limiter l’absorption d’iode radioactif inhalé/ingéré dans la glande
thyroïde
3.8
situation d’exposition d’urgence
situation d’exposition où l’exposition à un niveau élevé est inévitable en raison d’événements inattendus
ou nécessite une action importante
4 Recommandations relatives au mesurage d’urgence
4.1 Objectif d’un mesurage rapide spécifique
Le type d’urgence nucléaire ou radiologique et les premiers résultats de mesure fournissent les
informations sur la nature et la quantité de radionucléides rejetés.
Dans la première phase d’urgence, le mesurage rapide peut être effectué dans un objectif de dépistage,
par exemple pour déterminer si l’échantillon est significativement contaminé ou non.
Dans la phase intermédiaire, les mesurages rapides peuvent être effectués pour confirmer la nature et
la concentration d'activité des radionucléide(s)dans des échantillons d’eau.
Lorsque les radionucléides de l'échantillon sont connus, une mesure rapide devrait être en mesure de
déterminer si la ou les concentrations d'activité mesurées dépassaient ou non les valeurs NOI.
Dans la phase de transition vers le post-accidentel d’une situation d’urgence, lorsqu’un certain nombre
de mesures protectrices ont été prises pour réduire au minimum la dose pour le public, les mesurages
servent également à vérifier la nécessité de ces mesures protectrices, notamment l’évacuation, la mise à
l’abri d’urgence, la restriction alimentaire et la distribution de comprimés d’iode au public.
Des logigrammes sont généralement utilisés pour déterminer les méthodes d’essai qu’il convient
d’appliquer. Ces méthodes sont des méthodes d’essai de routine souvent utilisées dans les laboratoires
d’essai, avec des instructions sur la façon de les adapter pendant une situation d’urgence, ou des
documents ISO existants.
Le Tableau 1 fournit une vue d’ensemble des questions de haute priorité qui se posent lors des phases
décrites ci-dessus, de leur durée et des objectifs associés. La priorité relative de ces questions dépend
du type et de l’échelle de la situation d’urgence nucléaire ou radiologique.
Tableau 1 — Vue d’ensemble de la durée, des questions de haute priorité et des objectifs lors
de la première phase d’urgence, de la phase intermédiaire et de la phase de transition vers le
post-accidentel
Phases Haute priorité Objectif principal eau concerné
Première phase Identité des radionucléides, grande Mesures de protection pour le public, le
d’urgence image de l’étendue géographique de la bétail, l’agriculture, l’eau.
(premiers jours) zone contaminée.
Niveaux d’intervention dépassés ?
4 © ISO 2020 – Tous droits réservés
Tableau 1 (suite)
Phases Haute priorité Objectif principal eau concerné
Phase intermédiaire Grande image des échantillons, image Évaluation des contre-mesures prises avec
(jours— semaines) détaillée de la zone contaminée. les données du mesurage.
Focalisation sur la chaîne alimentaire et Les gens peuvent-ils retourner à leur domi-
l’eau. cile ?
Évaluation des zones où les niveaux Les aliments sont-ils propres à la consom-
d’intervention sont dépassés. mation ? L’eau est-elle potable ?
Surveillance et échantillonnage dans de
grandes zones, agricoles et urbaines.
Phase de transition Échantillonnage plus détaillé et analyses Surveillance en continu et échantillonnage
vers le post-accidentel avec des limites de détection inférieures plus en profondeur dans les zones agricoles
(semaines— mois) pour les aliments et l’eau. et urbaines : chaîne alimentaire et réser-
voirs d’eau, eaux de surface.
4.2 Niveaux de dépistage de routine en fonction des niveaux d’intervention
En situation normale, l’Organisation mondiale de la santé (OMS) a défini des niveaux de dépistage de
routine pour l’eau de boisson, au-dessous desquels aucune action n’est requise. Ces niveaux de dépistage
−1 −1
sont de 0,5 Bq·l pour l’activité alpha globale et de 1 Bq·l pour l’activité bêta globale. Si aucune de ces
valeurs n’est dépassée, la dose totale indicative de 0,1 mSv/an n’est pas dépassée non plus.
Dans une situation d’urgence, les niveaux d’intervention sont définis et exprimés en termes de limite
de dose par unité de temps (par exemple, mSv/jour, mSv/semaine ou mSv/an). Ils sont utilisés par les
décideurs pour décider de la mise en œuvre des actions de protection des individus face à des niveaux
de radioactivité élevés. Lorsque ces niveaux d’intervention sont dépassés, des actions appropriées sont
mises en place dans le respect des plans ou protocoles d’urgence nationaux.
Les niveaux opérationnels d’intervention (NOI) sont généralement exprimés en activité volumique
−1 −3 −1
(Bq·l , Bq·m ou Bq·kg ). Il convient que les mesurages rapides effectués après une situation d’urgence
produisent des résultats d’essai qui peuvent être mis en relation avec les NOI.
Si nécessaire, il convient de confier la conversion de l’activité volumique en dose à comparer avec les
niveaux d’intervention à du personnel scientifique expérimenté. Pour l’eau contaminée, les niveaux
d’intervention concernent l’ingestion, le lavage, la douche ou la cuisine. La conversion de l’activité
volumique dans l’eau potable en dose est effectuée en multipliant l’activité volumique par le coefficient
de conversion de dose (pour l’ingestion) et en estimant la consommation d’eau par unité de temps.
Les niveaux d’intervention peuvent varier d’un pays à l’autre. Dans le présent document, les données
de l’UE et des États-Unis sont fournies à titre d’exemples à l’Annexe B. D’autres états peuvent appliquer
leurs propres niveaux d’intervention nationaux.
Les résultats de mesurage d’échantillons sont utilisés pour la prise de décision basée sur l’évaluation
assurant que la qualité de l’eau respecte les objectifs donnés, est conforme aux seuils ou se situe dans
une gamme particulière d’un système de classification.
Les principes, les exigences de base et l’illustration de méthodes applicables à la prise de décision sont
décrits dans la Référence [14], notamment les méthodes d’examen à froid de la sensibilité de la prise de
décisions vis-à-vis des erreurs et incertitudes.
4.3 Niveaux opérationnels d’intervention (NOI) de l’UE, des États-Unis et de l’AIEA
[9] [11][12]
Les NOI des États-Unis et de l’UE sont répertoriés dans le tableau de l’Annexe B. Dans des
situations d’urgence, un niveau de contamination plus élevé est admis pour une courte période de
temps, quelques jours ou quelques semaines.
−1 −1
Ces niveaux peuvent atteindre 500 Bq·l pour les isotopes de l’iode et 1 200 Bq·l pour les isotopes
134 137
émetteurs gamma, par exemple Cs et Cs. Il est clair qu’il convient que les mesurages rapides
permettent de déterminer facilement ces activités volumiques.
[8]
L’AIEA définit un groupe de NOI légèrement différent . Ces NOI sont des valeurs seuils de concentrations
dans les aliments, le lait ou l’eau qui assurent la prise en compte des restrictions de consommation afin
de maintenir la dose efficace individuelle au-dessous de 10 mSv par an.
Après la première phase d’urgence, les valeurs NOI peuvent être revues rapidement par les autorités
pour revenir aux valeurs de référence habituelles. Dans ce cas, les laboratoires devraient revenir aux
méthodes et au matériel d’essai en laboratoire habituels.
5 Mesurages rapides
5.1 Adaptation des méthodes utilisées
Au cours de la première phase d’urgence, le temps est un facteur très important. D’autres facteurs
considérés comme principaux en routine peuvent revêtir une importance secondaire. Il convient d’éviter
les modes opératoires radiologiques chronophages au cours des phases d’urgence et intermédiaire.
Dans certains cas, le laboratoire d’essai doit appliquer des méthodes de mesure rapides spécifiques
inhabituelles. Il convient que ces méthodes aient été préalablement validées. En règle générale, lorsque
cela est possible, il convient que les méthodes rapides reposent sur des méthodes d’essai de routine car
l’équipe du laboratoire est déjà formée à leur utilisation et leurs caractéristiques analytiques sont bien
connues. Une optimisation de ces méthodes peut reposer sur une prise d’essai plus petite, un traitement
radiochimique plus simple et une durée de comptage plus courte.
Les méthodes d’essai suivantes, généralement effectuées en routine, doivent être utilisées et adaptées :
ISO 9696, ISO 9697, ISO 9698, ISO 10703, ISO 10704, ISO 11704, ISO 13160, ISO 13161, ISO 13162,
ISO 13163, ISO 13165-1, ISO 13165-2, ISO 13165-3, ISO 13166, ISO 13167, ISO 13168, ISO 17294-2,
ISO 19581 et ISO 20042.
5.2 Échantillonnage
Des recommandations relatives à l’échantillonnage et la conservation des échantillons d’eau sont
[15]
données dans la série ISO 5667 . Appliquer l’ISO 5667-3 pour la conservation et la préservation des
échantillons d’eau.
Un mode opératoire d’élaboration d’une stratégie d’échantillonnage et de mesure pour une estimation
rapide de la zone contaminée est donné dans la Référence [16]. Pour ce faire, combiner les mesures
obtenues avec les moyens de mesure portables gamma (ou alpha/bêta) avec les données obtenues par
spectrométrie gamma, ou par des techniques de comptage alpha/bêta.
Le type de situation d’urgence nucléaire et radiologique ainsi que les premières mesures donnent les
informations initiales sur le radionucléide ou le mélange de radionucléides susceptible d’avoir contaminé
les masses d’eau. Il convient d’appliquer des techniques de dépistage en utilisant ces informations.
Effectuer l’échantillonnage afin d’identifier le radionucléide ou le mélange de radionucléides, ainsi que
leurs activités volumiques. En général, il convient que la stratégie d’échantillonnage vise à évaluer la
conformité avec les NOI.
Il convient d’orienter la stratégie d’échantillonnage de façon à obtenir des réponses aux questions
suivantes :
1) L’eau du robinet risque-t-elle d’être contaminée ? Si oui, les individus risquent-ils d’être contaminés
en buvant l’eau, en se lavant ou en cuisinant avec cette eau ?
2) Quel(s) radionucléide(s) provoque(nt) la contamination ?
3) Quels sont le degré et l’étendue de contamination de la zone ou de la masse d’eau ?
4) Les eaux de surface ou les aquifères utilisés pour l’eau potable risquent-ils d’être contaminés ?
6 © ISO 2020 – Tous droits réservés
Prélever des échantillons aléatoires couvrant l’eau de surface ou les sources d’eau sur une zone étendue.
Il convient que le nombre d’échantillons soit relativement faible pour ne pas surcharger la capacité des
laboratoires d’essai.
5.3 Méthodes d’essai rapides
5.3.1 Dépistage : identification des échantillons hautement contaminés
Le processus de dépistage des échantillons d’eau peut être appliqué en utilisant des instruments de
levée de doute. Un grand nombre d’échantillons est envoyé au laboratoire. Avant d’ouvrir tout paquet
contenant des échantillons, les éventuels dangers radiologiques immédiats doivent être identifiés afin
de réduire au minimum les risques pour les employés responsables du traitement et de l’analyse des
échantillons.
Généralement, un équipement portatif tel qu’un compteur Geiger-Mueller ou un détecteur NaI(TI),
est approprié pour cette tâche de dépistage des échantillons dès leur arrivée au laboratoire. Aucune
évaluation de la contamination par les particules alpha ou bêta à faible énergie ne peut être effectuée à
l’aide d’instruments portatifs.
5.3.2 Sélection de la stratégie analytique
Selon la situation d’urgence, les radionucléides à mesurer sont généralement connus par le laboratoire
d’essai.
[14]
Par exemple ,
— dans le le cas d’une fusion du cœur d’un réacteur nucléaire, les rejets dans l’environnement peuvent
3 90 91 93 96 99 105 109 111 112 115 121 125 126 127
contenir : H, Y, Sr, Y, Nb, Mo, Rh, Pd, Ag, Pd, Cd, Sn, Sn, Sb, Sb,
131 134 137 132 131m 132 133 135 140 142 143 143 146 147 149 151
I, Cs, Cs, I, Te, Te, I, I, La, Pr, Ce, Pr, Ba, Nd, Pm, Pm,
152m 153 156 157 239
Eu, Sm, Sm, Eu, Np.
— dans le cas d’un accident dans une usine de retraitement du combustible nucléaire, les émissions
3 90 95 95 99 103 106 129 131 134 137
dans l’environnement peuvent contenir : H, Sr, Nb, Zr, Tc, Ru, Ru, I, I, Cs, Cs,
141 144 238 239 240 241 241 242 242 243 244
Ce, Ce, Pu, Pu, Pu, Am, Pu, Cm, Pu, Am, Cm.
— dans le cas d’une contamination par la matière radioactive naturelle, les rejets dans l’environnement
peuvent contenir des isotopes issus de l’une des trois chaînes de désintégration du thorium et de
l’uranium naturels.
Si les échantillons arrivant au laboratoire sont contaminés par des radionucléides inconnus, le
laboratoire doit définir une stratégie analytique pour les identifier.
En général, cette stratégie commence avec les méthodes de dépistage telles que la mesure alpha globale,
[16]
la mesure bêta globale et la spectrométrie gamma .
La spectrométrie gamma est une méthode de mesure puissante permettant de fournir une estimation
du niveau de contamination de l’échantillon et d’identifier les radionucléides émetteurs gamma présents.
Il est important d’ajouter au programme informatique toutes les informations (données nucléaires) sur
les radionucléides qui peuvent apparaître en cas d’urgence nucléaire, notamment les radionucléides à
95 131 132 133 135 132 134 137 140 140 144
vie courte. L’inclusion particulière de Nb, I, I, I, I, Te, Cs, Cs, Ba, La et Ce
[17].
est recommandée
Lorsque plusieurs radionucléides émetteurs gamma sont détectés, il est possible de se concentrer sur
l’évaluation de l’activité volumique des radionucléides responsables de la majorité de la dose attendue.
Pour évaluer la présence d’émetteurs alpha et d’émetteurs bêta, les méthodes de dépistage rapides sont
nécessaires.
L’Annexe C fournit des recommandations supplémentaires sur les types d’analyses et de délais qui
peuvent être requis lors de la première phase d’urgence pour une gamme de matrices, y compris
l’eau. D’après les premiers résultats, il peut être nécessaire de procéder à un mesurage spécifique des
89 90
émetteurs alpha ou des émetteurs bêta particuliers tels que les isotopes du strontium ( Sr et Sr).
Après la première phase d’urgence, il est possible d'extrapoler la concentration d'activité de certains
radionucléides non émetteurs gamma sur la base de la présence / activité de certains émetteurs
gamma mesurés dans l'échantillon Cependant, ce type d'évaluation ne peut être fiable que pour un
espace d'échantillonnage limité (les dépôts peuvent être différents) et dans le temps (les radionucléides
à demi-vie courte se désintègrent rapidement et les conditions environnementales peuvent changer).
Lorsqu'un laboratoire utilise cette méthode d'extrapolation pour estimer la concentration d'activité des
radionucléides, les résultats ne doivent pas être inclus dans le rapport d'essai principal, mais rapportés
séparément (par exemple dans une annexe ou dans des tableaux séparés).
8 © ISO 2020 – Tous droits réservés
a
Les valeurs sont données à titre d’exemples et peuvent être modifiées en fonction de la situation, des
réglementations nationales, des NOI, mais il convient qu’elles soient déterminées à l’avance.
Figure 1 — Exemple de schéma décisionnel simplifié
Le schéma décisionnel (voir Figure 1) est un logigramme détaillé indiquant comment traiter les
échantillons ayant des activités volumiques élevées et faibles, quand utiliser les méthodes de dépistage
et quand utiliser les méthodes spécifiques des radionucléides.
D’autres exemples de schéma décisionnel reposant sur les niveaux d’intervention sont fournis dans les
Références [17] et [18], dont un est donné à l’Annexe D.
Il convient de définir l’approche analytique en fonction des niveaux d’intervention et de la justification
des contre-mesures. Si les niveaux d’intervention ne sont pas dépassés, les contre-mesures sont inutiles.
Dans ce cas, le NOI devient un niveau de référence pour les résultats obtenus. Un niveau de dépistage
peut ensuite être défini par le laboratoire pour soumettre à essai les échantillons conformément à la
[19]
Figure 2 ci-dessous :
Figure 2 — Description du niveau de dépistage et du niveau de référence dans le niveau de
contamination
Il convient que les résultats d’un mesurage rapide soit suffisamment exact pour s’assurer qu’un niveau
d’intervention est dépassé ou non. Néanmoins, dans ce contexte, le délai d’obtention du résultat est bien
plus important que l’exactitude.
Par exemple, le résultat de mesure pour un échantillon d’eau peut être consigné comme suit :
— le résultat indique (avec un niveau de confiance de 95 %) qu’un niveau d’intervention n’est pas
dépassé ;
— le résultat indique une valeur qui s’approche étroitement du niveau d’intervention et la nécessité
d’un plus grand nombre de données (une analyse supplémentaire est requise). Par ailleurs, le niveau
d’intervention peut être considéré comme « potentiellement » dépassé ;
— le résultat indique (avec un niveau de confiance de 95 %) qu’un niveau d’intervention est dépassé.
Généralement, les incertitudes des caractéristiques des dépôts hu
...










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.