Eurocode 3 - Design of steel structures - Part 6: Crane supporting structures

1.1   Scope of EN 1993-6
(1) EN 1993-6 provides rules for structural design of crane supporting structures.
(2) EN 1993-6 is applicable to crane supporting structures, especially to indoor and outdoor overhead crane runway beams, of:
a)   overhead travelling cranes, either:
—   top-mounted cranes;
—   underslung cranes;
b)   monorail hoist blocks.
NOTE   The principles of the design rules can be applied to supporting structures of other types of cranes making due allowance for differences in the crane-induced actions, if exist. For example, the design rules for supporting structures of the cranes listed in (2) assume that the horizontal crane loads occur randomly scattered along the runways in general. This assumption does not apply to other cranes such as travelling wall jib cranes.
(3) EN 1993-6 does not apply to the tracks and suspensions of light crane systems conforming to EN 16851, see Figure 1.1.
NOTE   The standardized tracks and suspensions of light crane systems are considered as parts of the crane.
Key
1   supporting beam designed according to EN 1993 series
2   standardized track of light crane system designed according to EN 16851
3   support point
Figure 1.1 — Light crane system
(4) Additional rules are given for ancillary runway items including crane rails, structural end stops, surge connectors and surge girders and for runway supporting structures.
(5) EN 1993-6 does not apply to cranes and all other moving parts.
NOTE   Provisions for cranes are given in the EN 13001 series in general and for bridge and gantry cranes in EN 15011 in particular.
1.2   Assumptions
(1) Unless specifically stated, EN 1990, the EN 1991 series   and the EN 1993-1 series apply.
(2) The design methods given in EN 1993-6 are applicable if
—   the execution quality and tolerances are as specified in EN 1090-2, and;
—   the construction materials and products used are as specified in the relevant parts of EN 1993, or in the relevant material and product specifications.
(3) Following interfaces between hoisting device and its supporting structure are assumed:
a)   the top of crane rail for top-mounted cranes;
b)   the top of flange on which the crane or hoist block operates for underslung cranes and monorail hoist blocks;
c)   the support points as shown in Figure 1.1 for light crane systems.

Eurocode 3 - Bemessung und Konstruktion von Stahlbauten - Teil 6: Kranunterstützungen

1.1   Anwendungsbereich von EN 1993 6
(1) EN 1993 6 enthält Regeln für die Tragwerksbemessung von Kranunterstützungen.
(2) EN 1993 6 ist anwendbar für die Kranunterstützungen, insbesondere für Kranbahnträger innerhalb und außerhalb von Gebäuden von:
a)   Brückenlaufkranen, entweder:
   Laufkrane;
   Hängekrane;
b)   Einschienenkatzen.
ANMERKUNG   Die Grundsätze der Bemessungsregeln können auf die Unterstützungskonstruktionen anderer Kranarten angewendet werden, wobei gegebenenfalls die Unterschiede in den Einwirkungen aus dem Kranbetrieb zu berücksichtigen sind. Beispielsweise wird in den Bemessungsregeln für die Unterstützungskonstruktionen Kranunterstützungen der in (2) aufgeführten Kranarten vorausgesetzt, dass die horizontalen Kranlasten im Allgemeinen zufällig entlang der Kranbahnen verteilt auftreten. Diese Voraussetzung gilt nicht für andere Krane, wie z. B. Wandlaufkrane.
(3) EN 1993 6 ist nicht für die Schienen und Aufhängungen von Leichtkransystemen nach EN 16851 anwendbar, siehe Bild 1.1.
ANMERKUNG   Die genormten Schienen und Aufhängungen von Leichtkransystemen werden als Teil des Krans verstanden.
Legende
1   nach EN 1993 (Normenreihe) bemessener Unterstützungsträger
2   standardisierte Schiene eines nach EN 16851 bemessenen Leichtkransystems
3   Auflagerpunkt
Bild 1.1 — Leichtkransystem
(4) Zusätzlich werden Regeln für Zubehörteile von Kranbahnen einschließlich Kranschienen, bauliche Fahrbahnendbegrenzungen, Horizontalhalterungen und Horizontalträger und für die Kranbahnunterstützung angegeben.
(5) EN 1993 6 gilt nicht für Krane und alle anderen beweglichen Teile.
ANMERKUNG   Bestimmungen für Krane sind in der Normenreihe EN 13001 im Allgemeinen und für Brücken- und Portalkrane in EN 15011 im Besonderen angegeben.
1.2   Annahmen
(1) Sofern nicht ausdrücklich etwas anderes angegeben ist, gelten EN 1990, Normenreihe EN 1991  und Normenreihe EN 1993 1.
(2) Die in EN 1993 6 angegebenen Bemessungsverfahren sind anwendbar, wenn
   die Qualität der Ausführung und die Toleranzen den Festlegungen von EN 1090 2 entsprechen, und
   die verwendeten Baustoffe und -produkte den Festlegungen der zutreffenden Teile von EN 1993 oder den zutreffenden Material- und Produktspezifikationen entsprechen.
(3) Es werden die folgenden Schnittstellen zwischen den Hebezeugen und deren Unterstützung angenommen:
a)   die Oberkante der Kranschiene für Laufkrane;
b)   die Oberseite des Flansches, auf dem der Kran oder die Laufkatze im Fall von Hängekranen und Einschienenkatzen läuft;
c)   die in Bild 1.1 für Leichtkransysteme gezeigten Auflagerpunkte.

Eurocode 3 - Calcul des structures en acier - Partie 6 : Structures supportant des appareils de levage

1.1   Domaine d'application du FprEN 1993 6
(1) L'EN 1993 6 fournit des règles pour le calcul des structures supportant des appareils de levage.
(2) L'EN 1993 6 est applicable aux structures supportant des appareils de levage, en particulier aux poutres de roulement des appareils de levage intérieurs et extérieurs pour :
a)   les ponts roulants :
—   ponts roulants posés ;
—   ponts roulants suspendus ;
b)   les chariots-palan monorails.
NOTE   Les principes des règles de calcul peuvent être appliqués aux structures supportant d'autres types de ponts roulants, en tenant compte des différences existant, le cas échéant, dans les actions induites par l'appareil de levage. Par exemple, les règles de calcul des structures supportant les appareils de levage énumérées en (2) supposent que les charges horizontales de l'appareil de levage sont généralement exercées de manière aléatoire le long des chemins de roulement. Cette hypothèse ne s'applique pas à d'autres types d'appareils de levage, tels que les potences murales.
(3) L'EN 1993 6 ne s'applique pas aux voies de roulement et aux éléments de suspensions des systèmes de grues légères relevant de l'EN 16851, voir la Figure 1.1.
NOTE   Les voies de roulement et les suspensions standardisées des systèmes de grues légères sont considérées comme faisant partie de l'appareil de levage.
Légende
1   poutre porteuse relevant de la série EN 1993
2   voie de roulement standardisée de système de grue légère relevant de l'EN 16851
3   point d’attache
Figure 1.1 — Système de grue légère
(4) Des règles supplémentaires sont prévues pour les composants auxiliaires des chemins de roulement comprenant les rails, les butoirs, les dispositifs d'appuis transversaux et les poutres horizontales latérales, ainsi que pour les structures supportant des chemins de roulement.
(5) L'EN 1993 6 ne s'appliquent pas aux appareils de levage et à toutes les autres pièces mobiles.
NOTE   Les dispositions pour les appareils de levage sont données dans la série EN 13001 en général et pour les ponts roulants et portiques dans l'EN 15011 en particulier..
1.2   Hypothèses
(1) Sauf indication contraire, l'EN 1990, la série EN 1991  et la série EN 1993 s'appliquent.
(2) Les méthodes de calcul données dans l'EN 1993 6 sont applicables si :
—   la qualité de l'exécution et les tolérances sont telles que spécifiées dans l'EN 1090 2 ; et
—   les matériaux de construction et les produits utilisés sont conformes aux parties appropriées de l'EN 1993, ou aux spécifications appropriées des matériaux et des produits.
(3)  Les niveaux d’interfaces entre l'appareil de levage et sa structure support sont définis comme suit
a)   la face supérieure du champignon du rail pour les ponts roulants posés ;
b)   la face supérieure de la semelle sur laquelle circulent les ponts roulants suspendus ou les chariots palan monorails ;
c)   les points d’attache indiqués à la Figure 1.1 pour les systèmes de grue légère.

Evrokod 3 - Projektiranje jeklenih konstrukcij - 6 del: Žerjavne proge

General Information

Status
Not Published
Publication Date
17-Mar-2026
Current Stage
5060 - Closure of Vote - Formal Approval
Start Date
27-Nov-2025
Due Date
10-Oct-2023
Completion Date
27-Nov-2025

Relations

Draft
prEN 1993-6:2024
English language
75 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


SLOVENSKI STANDARD
oSIST prEN 1993-6:2024
01-junij-2024
Evrokod 3 - Projektiranje jeklenih konstrukcij - 6 del: Žerjavne proge
Eurocode 3 - Design of steel structures - Part 6: Crane supporting structures
Eurocode 3 - Bemessung und Konstruktion von Stahlbauten - Teil 6: Kranbahnen
Eurocode 3 - Calcul des structures en acier - Partie 6 : Structures supportant des
appareils de levage
Ta slovenski standard je istoveten z: prEN 1993-6
ICS:
53.020.20 Dvigala Cranes
91.010.30 Tehnični vidiki Technical aspects
91.080.13 Jeklene konstrukcije Steel structures
oSIST prEN 1993-6:2024 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

oSIST prEN 1993-6:2024
oSIST prEN 1993-6:2024
DRAFT
EUROPEAN STANDARD
prEN 1993-6
NORME EUROPÉENNE
EUROPÄISCHE NORM
March 2024
ICS 53.020.20; 91.010.30; 91.080.13 Will supersede EN 1993-6:2007
English Version
Eurocode 3 - Design of steel structures - Part 6: Crane
supporting structures
Eurocode 3 - Calcul des structures en acier - Partie 6: Eurocode 3 - Bemessung und Konstruktion von
Chemins de roulement Stahlbauten - Teil 6: Kranbahnen
This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee
CEN/TC 250.
If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations
which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC
Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without
notice and shall not be referred to as a European Standard.

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CEN All rights of exploitation in any form and by any means reserved Ref. No. prEN 1993-6:2024 E
worldwide for CEN national Members.

oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
Contents Page
European foreword . 5
0 Introduction . 6
1 Scope . 9
1.1 Scope of prEN 1993-6 . 9
1.2 Assumptions . 10
2 Normative references . 10
3 Terms, definitions and symbols . 10
3.1 Terms and definitions . 10
3.2 Symbols . 13
3.2.1 General . 13
3.2.2 Latin upper-case symbols . 13
3.2.3 Latin lower-case symbols . 13
3.2.4 Greek upper-case symbols . 15
3.2.5 Greek lower-case symbols . 15
4 Basis of design . 16
4.1 General rules . 16
4.1.1 Basic requirements . 16
4.1.2 Design service life . 17
4.1.3 Durability . 17
4.1.4 Clearances to overhead travelling cranes . 17
4.1.5 Crane tests . 17
4.2 Basic variables . 17
4.3 Verification by the partial factor method . 18
4.3.1 Design situations at ultimate and serviceability limit states (except for fatigue) . 18
4.3.2 Fatigue design situations . 19
5 Materials . 19
5.1 Structural steels . 19
5.2 Bearings . 19
5.3 Other products for crane supporting structures . 19
5.3.1 General . 19
5.3.2 Rail steels . 19
5.3.3 Special connecting devices for rails . 20
6 Durability . 20
7 Structural analysis . 21
7.1 Structural modelling for analysis . 21
7.1.1 General . 21
7.1.2 Eccentricity of wheel loads . 21
7.2 Global analysis . 21
7.3 Imperfections . 21
7.4 Methods of analysis . 22
7.4.1 General . 22
7.4.2 Cross-section properties . 23
7.5 Analysis of crane runway beams . 24
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
7.5.1 Global effects . 24
7.5.2 Local effects of wheel loads . 25
7.6 Local stresses in webs due to wheel loads . 25
7.6.1 General . 25
7.6.2 Local vertical compressive stresses . 26
7.6.3 Local shear stresses . 28
7.6.4 Local bending stresses due to eccentricity of crane-induced actions . 29
7.7 Local bending stresses in bottom flanges due to wheel loads . 32
7.7.1 General . 32
7.7.2 Overview about calculation methods . 32
7.7.3 Widely spaced wheels . 33
7.7.4 Closely spaced wheels . 35
7.8 Local stresses in rail welds due to wheel loads . 36
7.8.1 Ultimate limit state (except for fatigue) . 36
7.8.2 Fatigue design situation . 38
8 Ultimate limit states . 41
8.1 Consideration of local effects of crane-induced actions . 41
8.2 Lateral-torsional buckling . 41
8.2.1 General . 41
8.2.2 Effective level of application of wheel loads . 41
8.2.3 Verification methods . 41
8.3 Resistance of webs to wheel loads. 43
8.3.1 General . 43
8.3.2 Length of stiff bearing . 43
8.4 Buckling of plates . 43
8.5 Resistance of bottom flanges to wheel loads . 43
9 Serviceability limit states . 48
9.1 General . 48
9.2 Deformations . 49
9.3 Limitation of web breathing . 51
9.4 Elastic behaviour of runway beams . 51
9.5 Lateral vibration of the bottom flange . 52
10 Fasteners, welds, surge connectors and rails . 52
10.1 Welded connections . 52
10.2 Bolted connections . 53
10.3 Surge connectors . 53
10.4 Crane rails . 54
10.4.1 Design service life . 54
10.4.2 Rail selection . 54
10.5 Rail fixings . 55
10.5.1 General . 55
10.5.2 Rigid fixings . 55
10.5.3 Independent fixings . 55
10.6 Rail joints . 56
11 Fatigue design situation . 57
11.1 Requirements . 57
11.2 Consideration of local effects of crane actions . 57
11.3 Fatigue stress range spectra . 57
11.3.1 General . 57
11.3.2 Simplified approach . 58
11.3.3 Damage equivalent factor . 60
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
11.4 Verifications . 62
11.4.1 General . 62
11.4.2 Multiple crane actions . 62
11.5 Fatigue resistance . 64
Annex A (informative) Design of crane rails with independent rail fixings . 65
A.1 Use of this informative annex . 65
A.2 Scope and field of application . 65
A.3 Structural analysis . 65
A.4 Action effects . 65
A.5 Verification . 67
Annex B (informative) Inspections of crane runway beams according to EN 1993-1-9 . 68
B.1 Use of this informative annex . 68
B.2 Scope and field of application . 68
B.3 Definitions . 68
B.4 Preparation of inspections . 69
B.5 Execution of inspections . 69
B.6 Documentation of inspections . 71
Annex C (informative) Guidance on crane runway beam classification for fatigue . 72
C.1 Use of this informative annex . 72
C.2 Scope and field of application . 72
C.3 Classification without calculation . 72
C.4 Classification with calculation . 73
Bibliography . 74
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
European foreword
This document (prEN 1993-6:2024) has been prepared by Technical Committee CEN/TC 250 “Structural
Eurocodes”, the secretariat of which is held by BSI. CEN/TC 250 is responsible for all Structural
Eurocodes and has been assigned responsibility for structural and geotechnical design matters by CEN.
This document is currently submitted to the CEN Enquiry.
This document will supersede EN 1993-6:2007 and its corrigenda.
The first generation of EN Eurocodes was published between 2002 and 2007. This document forms part
of the second generation of the Eurocodes, which have been prepared under Mandate M/515 issued to
CEN by the European Commission and the European Free Trade Association.
The Eurocodes have been drafted to be used in conjunction with relevant execution, material, product
and test standards, and to identify requirements for execution, materials, products and testing that are
relied upon by the Eurocodes.
The Eurocodes recognize the responsibility of each Member State and have safeguarded their right to
determine values related to regulatory safety matters at national level through the use of National
Annexes.
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
0 Introduction
0.1 Introduction to the Eurocodes
The Structural Eurocodes comprise the following standards generally consisting of a number of Parts:
— EN 1990, Eurocode — Basis of structural and geotechnical design;
— EN 1991, Eurocode 1 — Actions on structures;
— EN 1992, Eurocode 2 — Design of concrete structures;
— EN 1993, Eurocode 3 — Design of steel structures;
— EN 1994, Eurocode 4 — Design of composite steel and concrete structures;
— EN 1995, Eurocode 5 — Design of timber structures;
— EN 1996, Eurocode 6 — Design of masonry structures;
— EN 1997, Eurocode 7 — Geotechnical design;
— EN 1998, Eurocode 8 — Design of structures for earthquake resistance;
— EN 1999, Eurocode 9 — Design of aluminium structures;
— New parts are under development, e.g. Eurocode for design of structural glass.
The Eurocodes are intended for use by designers, clients, manufacturers, constructors, relevant
authorities (in exercising their duties in accordance with national or international regulations),
educators, soft-ware developers, and committees drafting standards for related product, testing and
execution standards.
NOTE Some aspects of design are most appropriately specified by relevant authorities or, where not specified,
can be agreed on a project-specific basis between relevant parties such as designers and clients. The Eurocodes
identify such aspects making explicit reference to relevant authorities and relevant parties.
0.2 Introduction to the EN 1993 series
EN 1993 applies to the design of buildings and civil engineering works in steel. It complies with the
principles and requirements for the safety and serviceability of structures, the basis of their design and
verification that are given in EN 1990 — Basis of structural and geotechnical design.
EN 1993 is concerned only with requirements for resistance, serviceability, durability and fire resistance
of steel structures. Other requirements, e.g. concerning thermal or sound insulation, are not covered.
EN 1993 is subdivided in various parts:
EN 1993-1, Design of Steel Structures — Part 1: General rules and rules for buildings;
EN 1993-2, Design of Steel Structures — Part 2: Bridges;
EN 1993-3, Design of Steel Structures — Part 3: Towers, masts and chimneys;
EN 1993-4, Design of Steel Structures — Part 4: Silos and tanks;
EN 1993-5, Design of Steel Structures — Part 5: Piling;
EN 1993-6, Design of Steel Structures — Part 6: Crane supporting structures;
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
EN 1993-7, Design of steel structures — Part 7: Sandwich panels.
EN 1993-1 in itself does not exist as a physical document, but as a document series that comprises the
following 14 separate parts, the basic part being EN 1993-1-1:
EN 1993-1-1, Design of Steel Structures — Part 1-1: General rules and rules for buildings;
EN 1993-1-2, Design of Steel Structures — Part 1-2: Structural fire design;
EN 1993-1-3, Design of Steel Structures — Part 1-3: Cold-formed members and sheeting;
NOTE Cold formed hollow sections supplied according to EN 10219 are covered in EN 1993-1-1.
EN 1993-1-4, Design of Steel Structures — Part 1-4: Stainless steel structures;
EN 1993-1-5, Design of Steel Structures — Part 1-5: Plated structural elements;
EN 1993-1-6, Design of Steel Structures — Part 1-6: Strength and stability of shell structures;
EN 1993-1-7, Design of Steel Structures — Part 1-7: Plate assemblies with elements under transverse loads;
EN 1993-1-8, Design of Steel Structures — Part 1-8: Joints;
EN 1993-1-9, Design of Steel Structures — Part 1-9: Fatigue;
EN 1993-1-10, Design of Steel Structures — Part 1-10: Material toughness and through-thickness
properties;
EN 1993-1-11, Design of Steel Structures — Part 1-11: Tension components;
EN 1993-1-12, Design of Steel Structures — Part 1-12: Additional rules for steel grades up to S960;
EN 1993-1-13, Design of Steel Structures — Part 1-13: Beams with large web openings;
EN 1993-1-14, Design of Steel Structures — Part 1-14: Design assisted by finite element analysis.
All subsequent parts numbered EN 1993-1-2 to EN 1993-1-14 treat general topics that are independent
from the structural type like structural fire design, cold-formed members and sheeting, stainless steels,
plated structural elements, etc.
All subsequent parts numbered EN 1993-2 to EN 1993-7 treat topics relevant for a specific structural
type like steel bridges, towers, masts and chimneys, silos and tanks, piling, crane supporting structures,
etc. EN 1993-2 to EN 1993-7 refer to the generic rules in EN 1993-1 and supplement, modify or supersede
them.
0.3 Introduction to EN 1993-6
EN 1993-6 gives specific design rules for crane supporting steel structures. It is intended to be used with
EN 1990, EN 1991 and the EN 1993-1 series. Matters that are already covered in those documents are
not repeated. The focus in EN 1993-6 is on design rules that supplement, modify or supersede the
equivalent provisions given in the EN 1993-1 series.
0.4 Verbal forms used in the Eurocodes
The verb “shall” expresses a requirement strictly to be followed and from which no deviation is permitted
in order to comply with the Eurocodes.
The verb “should” expresses a highly recommended choice or course of action. Subject to national
regulation and/or any relevant contractual provisions, alternative approaches could be used/adopted
where technically justified.
The verb “may” expresses a course of action permissible within the limits of the Eurocodes.
The verb “can” expresses possibility and capability; it is used for statements of fact and clarification of
concepts.
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
0.5 National Annex for EN 1993-6
National choice is allowed in this standard where explicitly stated within notes. National choice includes
the selection of values for Nationally Determined Parameters (NDPs).
The national standard implementing EN 1993-6 can have a National Annex containing all national choices
to be used for the design of buildings and civil engineering works to be constructed in the relevant
country.
When no national choice is given, the default choice given in this standard is to be used.
When no national choice is made and no default is given in this standard, the choice can be specified by a
relevant authority or, where not specified, agreed for a specific project by appropriate parties.
National choice is allowed in EN 1993-6 through notes to the following clauses:
4.1.2(2) 4.1.5(2) 4.3.1(2) 4.3.2(1)
4.3.2(2) 5.1(1) 5.3.2(2) 5.3.3(1)
7.1.2(1) 7.5.1(1) 7.6.1(1) 7.6.4(6)
7.7.1(1) 9.2(1) 11.1(4) 11.4.2(6)
National choice is allowed in prEN 1993-6 on the application of the following informative annexes:
Annex A Annex B Annex C
The National Annex can contain, directly or by reference, non-contradictory complementary information
for ease of implementation, provided it does not alter any provisions of the Eurocodes.
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
1 Scope
1.1 Scope of prEN 1993-6
(1) EN 1993-6 provides rules for structural design of crane supporting structures.
(2) EN 1993-6 is applicable to crane supporting structures, especially to indoor and outdoor overhead
crane runway beams, of:
a) overhead travelling cranes, either:
— top-mounted cranes;
— underslung cranes;
b) monorail hoist blocks.
NOTE The principles of the design rules can be applied to supporting structures of other types of cranes making
due allowance for differences in the crane-induced actions, if exist. For example, the design rules for supporting
structures of the cranes listed in (2) assume that the horizontal crane loads occur randomly scattered along the
runways in general. This assumption does not apply to other cranes such as travelling wall jib cranes.
(3) EN 1993-6 does not apply to the tracks and suspensions of light crane systems conforming with
EN 16851, see Figure 1.1.
NOTE The standardized tracks and suspensions of light crane systems are considered as parts of the crane.

Key
1 supporting beam designed according to EN 1993-1
2 standardized track of light crane system designed according to EN 16851
3 support point
Figure 1.1 — Light crane system
(4) Additional rules are given for ancillary runway items including crane rails, structural end stops, surge
connectors and surge girders and for runway supporting structures.
(5) EN 1993-6 does not apply to cranes and all other moving parts.
NOTE Provisions for cranes are given in EN 13001 series.
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
1.2 Assumptions
(1) Unless specifically stated, EN 1990, EN 1991 and the EN 1993-1 series apply.
(2) The design methods given in EN 1993-6 are applicable if
— the execution quality and tolerances are as specified in EN 1090-2, and;
— the construction materials and products used are as specified in the relevant parts of EN 1993, or in
the relevant material and product specifications.
(3) Following interfaces between hoisting device and its supporting structure are assumed:
a) the top of crane rail for top-mounted cranes;
b) the top of flange on which the crane or hoist block operates for underslung cranes and monorail hoist
blocks;
c) the support points as shown in Figure 1.1 for light crane systems.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
NOTE See the Bibliography for a list of other documents cited that are not normative references, including
those referenced as recommendations (i.e. through ‘should’ clauses) and permissions (i.e. through ‘may’ clauses).
EN 1090-2, Execution of steel structures and aluminium structures - Part 2: Technical requirements for steel
structures
EN 1990:2023, Eurocode - Basis of structural and geotechnical design
EN 1991 (all parts), Eurocode 1 — Actions on structures
EN 1993 (all parts), Eurocode 3 — Design of steel structures
3 Terms, definitions and symbols
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in EN 1990:2023, EN 1991-3, the
EN 1993-1 series and the following apply.
3.1.1
wheel load
vertical action due to crane operation
3.1.2
crane surge
horizontal actions due to crane travelling (or trolley traversing if relevant), acting longitudinally and/or
laterally to the runway beams caused by acceleration/deceleration and/or by skewing

As impacted by EN 1990:2023/prA1:2024
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
3.1.3
crane supporting structure
assembly of stationary load bearing components of a crane installation supporting the crane and
transmitting all crane-induced actions to foundations; usually considered a part of a building structure
and designed accordingly
Note 1 to entry: For design reasons, crane supporting structures are usually subdivided into the crane runway
and the crane runway supporting structure.
3.1.4
crane runway
crane supporting structure serving as track and support system on which the crane operates comprising
structural components such as crane runway beams, surge girders if relevant, surge connectors,
structural end stops and non-structural components such as electrical, access and safety facilities
3.1.5
crane runway beam
beam submitted directly or through a rail to crane-induced actions
Note 1 to entry: For crane runways with surge girder, only the beam underneath the wheel loads is referred to
as crane runway beam, see Figure 3.1.
3.1.6
surge girder
beam or lattice girder acting as continuous lateral support that resists the crane surge from crane runway
beams
Note 1 to entry: See Figure 3.1.
3.1.7
surge connector
connecting device acting as discrete lateral support that resists the crane surge from crane runway beams
or surge girders
3.1.8
structural end stop
component intended to stop a crane, trolley or hoist block reaching the end of a runway
3.1.9
crane runway supporting structure
crane supporting structure transmitting all crane-induced actions from the crane runway to foundations
Note 1 to entry: The crane runway supporting structure includes, where relevant, runway beam supports,
brackets, columns, frames, bracings and foundations.
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
(c) integral surge
(b) integral surge (d) integral surge girder
(a) separated surge girder with
girder with shared by two crane
girder secondary truss
secondary beam runway beams
girder
Key
1 crane runway beam
2 secondary beam or secondary truss girder
3 truss or panel bracing (possibly used as walkway)
4 surge girder
Figure 3.1 — Crane runway beams with surge girder (selection)
3.1.10
elastomeric bearing pad
resilient reinforced elastomeric bedding material intended for use under crane rails
3.1.11
C class
classification of the fatigue action from a crane as a whole based on its net load spectrum
Note 1 to entry: See EN 1991-3.
3.1.12
R class
classification of the global effects of the fatigue relevant crane action (in general, the effect of the single
wheel load of a crane) on the constructional details of the crane supporting structure neglecting multiple
load effects
Note 1 to entry: See EN 1993-1-9 for further fatigue related definitions.
3.1.13
multiple load effect
effect (either global or local) on the constructional details of the crane supporting structure caused by
multiple wheel loads of a crane or multiple crane actions that is not included in the R class
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
3.2 Symbols
3.2.1 General
For the purpose of this document the following symbols apply.
3.2.2 Latin upper-case symbols
D Additional damage due to combinations of two or more cranes occasionally acting together
dup
D Damage due to a single crane i acting independently
i
Design resistance of the bottom flange of a beam subjected to a wheel load from an
F
f,Rd
underslung crane or hoist block trolley
F * In-service wind load
W
F Design value of wheel load
z,Ed
H Lateral horizontal crane load
y,Ed
Moment of inertia of a flange with an effective width b about its horizontal centroidal
f,eff
If,eff
axis
I Moment of inertia of a rail about its horizontal centroidal axis
r
Moment of inertia of a combined cross section comprising a rail and a flange with an
I
rf
effective width b about its horizontal centroidal axis
f,eff
Torsion constant
IT
L Distance between supports of a runway beam
z
L Length between lateral restraints
y
Q crane self-weight (see EN 1991-3)
C
Q Fatigue damage equivalent load (see EN 1991-3)
e
Q hoist load (see EN 1991-3)
H
Q Maximum value of the characteristic vertical wheel load i (see EN 1991-3)
max,i
R R class i
i
C C class i
i
TEd Design value of torsional moment
T Design value of torsional moment caused by eccentric lateral horizontal loads
H,Ed
T Design value of torsional moment caused by eccentric wheel loads
V,Ed
3.2.3 Latin lower-case symbols
a Spacing of transverse stiffeners; length of unstiffened web panel (see EN 1993-1-5)
a Effective throat thickness (see EN 1993-1-8)
Flange width
bf
b Effective width of a flange
f,eff
b Width of the foot of a rail
fr
c Clearance between the crane wheel flanges and the crane rail
c Coefficient for local web bending of I-sections
T
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
c Coefficient for local web bending of box sections
TB
c Coefficient for determining the longitudinal bending stress
x
Coefficient for determining the longitudinal bending stress at location i (the index i can take
c
xi
the vales 0, 1 or 2)
c Coefficient for determining the transverse bending stress
y
Coefficient for determining the transverse bending stress at location i (the index i can take
c
yi
the vales 0, 1 or 2)
e Lateral eccentricity of wheel load (the same as e in 2.5.2.1(2) of prEN 1991-3:2024)
y
e Eccentricity of lateral horizontal loads
z
f Characteristic value of yield strength
y
h Height to the level at which the crane is supported
c
h Height of crane rail
r
h Distance between top flange and longitudinal stiffener
h Depth of web (see EN 1993-1-1)
w
i Radius of gyration of a flange about its z-z axis
f,z
ℓ Effective loaded length at the underside of top flange
eff
Effective loaded length of rail weld
ℓeff,r
ℓ Effective length of bottom flange
f,eff
m Lever arm from the wheel load to the root of the flange
n Distance from the centerline of the wheel load to the free edge of the flange
r Radius of root fillet (see EN 1993-1-1)
s Spacing between the centres of crane rails
s Length of stiff bearing (see EN 1993-1-5)
s
t Flange thickness at the centerline of the wheel load
f,1
t Flange thickness
f
t Mean flange thickness
f,m
Minimum thickness below the wearing surface of a crane rail
tr
t Web thickness
w
u Horizontal displacement of a frame (or of a column) at crane support level
y
w Pre-camber
c
w Remaining total deflection taking into account the pre-camber (see EN 1990:2023, A.1)
max
Vertical deflection of a runway beam for a monorail hoist block, relative to its supports, due
w
z,pay
to payload only
w Horizontal deflection of a runway beam
y
w Vertical deflection of a runway beam
z
xe Distance from the end of a member to the axis of the wheel
x Distance between the axes of adjacent crane wheels
w
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
Perpendicular distance, in the plane of triangulation, from the centroidal axis of the
y
member to its relevant edge
z Distance below the underside of the top flange (defined in Figure 7.4)
3.2.4 Greek upper-case symbols
Difference between vertical deformations of two beams forming a crane runway
Δhc
Δs Change of spacing between the centres of crane rails
Δu Difference between horizontal displacements of adjacent frames or columns
y
Δσ Reference value of fatigue strength for normal stress at 2 × 10 cycles
C
Δσ Damage equivalent normal stress range related to 2 × 10 cycles
E,2
Equivalent constant amplitude normal stress range due to two or more cranes acting
ΔσE,2,dup
together
Δσ Equivalent constant amplitude normal stress range for a single crane i
E,2,i
Δτ Reference value of fatigue strength for shear stress at 2 × 10 cycles
C
Δτ Damage equivalent shear stress range related to 2 × 10 cycles
E,2
Equivalent constant amplitude shear stress range for a single crane i
ΔτE,2,i
3.2.5 Greek lower-case symbols
α Ratio Q /Q of crane self-weight Q and hoist load Q
C H C H
γ Partial factor for crane tests
F,test
γ Partial factor for equivalent constant amplitude stress ranges (see EN 1993-1-9)
Ff
γ Partial factor for checking reversible behaviour at serviceability limit state
M,ser
γ Partial factor for resistance of cross-sections (see EN 1993-1-1)
M0
Partial factor for resistance of members to instability assessed by member checks
γ
M1
(see EN 1993-1-1)
γ Partial factor for resistance of cross-sections in tension to fracture (see EN 1993-1-1)
M2
Partial factor for resistance of bolts, rivets, pins at ultimate limit states, welds and plates
γM2
in bearing (see EN 1993-1-8)
γ Partial factor for slip resistance at ultimate limit state (see EN 1993-1-8)
M3
γ Partial factor for slip resistance at serviceability limit state (see EN 1993-1-8)
M3,ser
γ Partial factor for bearing resistance of injection bolts (see EN 1993-1-8)
M4
Partial factor for resistance of joints in hollow section lattice girders (see EN 1993-1-8)
γM5
γ Partial factor for resistance of pins at serviceability limit states (see EN 1993-1-8)
M6,ser
γ Partial factor for preload of high strength bolts (see EN 1993-1-8)
M7
γ Partial factor for fatigue resistance (see EN 1993-1-9)
Mf
λ Damage equivalent factor for two or more cranes occasionally acting together
dup
λ Damage equivalent factor for crane i
i
μ Ratio for calculation of local bending stresses (see 7.7)
oSIST prEN 1993-6:2024
prEN 1993-6:2024 (E)
σ Design value of normal stress
Ed
σ Design value of normal stress at serviceability limit state
Ed,ser
σ Design value of equivalent stress at serviceability limit state
eq,Ed,ser
σ Design value of normal stress at the midline of the flange
f,Ed
σ Design value of local longitudinal normal stress due to bottom flange bending
ox,Ed
Design value of local longitudinal normal stress due to bottom flange bending at
σ
ox,Ed,ser
serviceability limit state
σ Design value of local transverse normal stress due to bottom flange bending
oy,Ed
Design value of local transverse normal stress due to bottom flange bending at
σ
oy,Ed,ser
serviceability limit state
Design value of local transverse normal stress due to flange bending of an unstiffened
σ
oy,end,Ed
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.