Methods for sampling and analysis of fire effluents

ISO 19701:2013 presents a range of sampling and chemical analytical methods suitable for the analysis of individual chemical species in fire atmospheres. The procedures relate to the analysis of samples extracted from an apparatus or effluent flow from a fire test rig or physical fire test model and are not concerned with the specific nature of the fire test. It does not cover aerosols and Fourier transform infrared (FTIR) technique.

Méthodes d'échantillonnage et d'analyse des effluents du feu

L'ISO 19701:2013 présente un éventail de techniques d'échantillonnage et de méthodes chimiques analytiques appropriées à l'analyse des différentes espèces chimiques en atmosphères de combustion. Les modes opératoires concernent l'analyse d'échantillons extraits d'un appareil ou d'un écoulement d'effluent à partir d'un appareil d'essai au feu ou d'un modèle physique d'essai au feu, mais il ne rend pas compte de la nature spécifique de l'essai de combustion. L'ISO 19701:2013 ne couvre pas les aérosols et la technique de la spectroscopie infrarouge à transformée de Fourier (IRTF).

Metode vzorčenja in analize dimnih plinov

Ta mednarodni standard predstavlja nabor metod vzorčenja in kemične analize, ki so primerne za
analizo posameznih kemijskih snovi v dimu. Postopki se nanašajo na analizo vzorcev, pridobljenih iz naprave ali pretoka dima iz požarne preskusne opreme ali fizikalnega preskusnega modela požara, in niso povezani s specifično naravo preskusa požarne varnosti.
Ta mednarodni standard ne zajema aerosolov (podrobno opisano v viru [3]) in tehnike FTIR (podrobno opisano v viru [4]). Plini, pomembni za varstvo okolja, kot so PAH, dioksini, furani in hormonski motilci, bodo obravnavali v prihodnjem dokumentu v standardu ISO TC92/SC3.

General Information

Status
Published
Publication Date
02-Apr-2013
Current Stage
9093 - International Standard confirmed
Start Date
15-Apr-2024
Completion Date
07-Dec-2025

Relations

Standard
ISO 19701:2018
English language
117 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 19701:2013 - Methods for sampling and analysis of fire effluents Released:4/3/2013
English language
112 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 19701:2013 - Méthodes d'échantillonnage et d'analyse des effluents du feu Released:4/3/2013
French language
112 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


SLOVENSKI STANDARD
01-september-2018
1DGRPHãþD
SIST ISO/TR 9122-3:1999
0HWRGHY]RUþHQMDLQDQDOL]HGLPQLKSOLQRY
Methods for sampling and analysis of fire effluents
Méthodes d'échantillonnage et d'analyse des effluents du feu
Ta slovenski standard je istoveten z: ISO 19701:2013
ICS:
13.220.99 Drugi standardi v zvezi z Other standards related to
varstvom pred požarom protection against fire
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 19701
Second edition
2013-04-01
Methods for sampling and analysis of
fire effluents
Méthodes d’échantillonnage et d’analyse des effluents du feu
Reference number
©
ISO 2013
© ISO 2013
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2013 – All rights reserved

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Methods of sampling . 1
4.1 General considerations . 1
4.2 Concentration and volume fraction . 2
4.3 Special considerations . 2
4.4 Sampling using gas-solution absorbers . 3
4.5 Sampling using solid sorption tubes . 5
4.6 Sampling for spectrometric or spectrophotometric analysis . 6
4.7 Sampling using gas bags . 7
5 Analytical methods for fire gases . 8
5.1 Carbon monoxide by non-dispersive infrared spectroscopy (NDIR) . 8
5.2 Carbon dioxide by non dispersive infrared spectroscopy (NDIR) . 9
5.3 Oxygen by paramagnetism .11
5.4 Hydrogen cyanide .12
5.5 Hydrogen chloride and hydrogen bromide .18
5.6 Hydrogen fluoride .25
5.7 Oxides of nitrogen .29
5.8 Acrolein .35
5.9 Formaldehyde .42
5.10 Acetaldehyde .47
5.11 Total aldehydes by colourimetry .48
5.12 Sulfur dioxide by high performance ion chromatography (HPIC) .50
5.13 Carbon disulfide by GC-MS in gas phase .52
5.14 Hydrogen sulphide .54
5.15 Ammonia .57
5.16 Antimony compounds by atomic absorption spectrophotometry (AAS) or inductively
coupled plasma emission spectrometry (ICP) .60
5.17 Arsenic compounds by atomic absorption spectrophotometry (AAS) or inductively
coupled plasma emission spectrometry (ICP) .62
5.18 Phosphorus by inductively coupled plasma emission spectrometry (ICP) .63
5.19 Phosphates .65
5.20 Phenol .69
5.21 Benzene .72
5.22 Toluene (Methylbenzene) .76
5.23 Styrene (Phenylethene) .80
5.24 Acrylonitrile and other nitriles by GC-MS in gas phase .83
5.25 Formic acid .86
5.26 Total hydrocarbons by FID . .89
5.27 Isocyanates .89
5.28 Oxygenated organic species .89
Annex A (informative) Species and measurement techniques currently deemed unsuitable in
fire effluents .90
Annex B (informative) Colour-change chemical detection tubes .92
Annex C (informative) Quantitative instrumental methods .93
Annex D (informative) Hydrogen fluoride by continuous online ion selective electrode .107
Bibliography .110
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International
Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies
casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 19701 was prepared by Technical Committee ISO/TC 92, Fire safety, Subcommittee SC 3, Fire threat
to people and environment.
This second edition cancels and replaces the first edition (ISO 19701:2005).
iv © ISO 2013 – All rights reserved

Introduction
The analysis of fire gases for use in toxic hazard and life threat assessment and other purposes (e.g.
impact on the environment) is a great challenge for the analyst. Fire atmospheres are by nature hostile
environments. Temperatures in excess of 1 000 °C are common, the gas phase can contain many corrosive,
toxic, irritant or combustible species together with relatively large quantities of condensable water.
These properties are largely incompatible with most instrumental analytical methods where a “clean”
sample is required. This poses many problems both for the qualification and quantification of the chemical
species and particulates in fire atmospheres. In presenting a sample to the measuring instrument that it
will tolerate, it can be necessary to filter particulates and remove other species. Losses in the sampling
train must therefore be quantifiable and taken into account in the final analysis.
Techniques also exist for measuring chemical species in situ; this will be the subject of a future document.
The methods described in Clause 5 have been used successfully by a number of laboratories. Studies of
repeatability and reproducibility of many of the methods covered in this International Standard have
[1] [2]
been taken from AFNOR NF X70-100-1 and AFAP-3.
For methods that involve a commercial instrument, uncertainty in the measured values may be estimated
from the manufacturer’s data and other information, e.g. allowance for losses in the sampling process.
For other methods, uncertainty in the measured values can occur through a variety of reasons, such as
sensitivity to the strength of reagents or the visibility of a colourimetric end point. In these cases, it is
assumed that best practice by qualified personnel is applied.
This International Standard is structured as follows.
— Clause 1 describes the scope of this standard
— Clause 4 describes methods of sampling.
— Clause 5 describes analytical methods for gases in fire atmospheres:
— Annex A provides information on techniques that were found not suitable with fire effluents.
— Annex B briefly describes the use of aspirated chemical colour-change tubes.
— Annex C is a summary of the main instrumental methods available for fire gas analysis, expanding
the information provided under the clauses for each individual chemical species.
— Annex D presents a method for continuous measurement of HF concentration using ion selective
electrode.
INTERNATIONAL STANDARD ISO 19701:2013(E)
Methods for sampling and analysis of fire effluents
SAFETY PRECAUTIONS — Due consideration must be given to the fact that both the fire gases
for analysis and many of the reagents used for their analysis can be toxic and/or present serious
health hazards. It is assumed throughout that the procedures described in this document will
be carried out by suitably qualified professional personnel, adequately trained in the hazards
and risks associated with such analyses and aware of any safety regulations that may be in force.
Consideration must also be given to the safe and ecologically acceptable disposal of all chemicals
used for analyses. This can require extensive treatment prior to release of the waste into the
environment. Again, it is assumed in this document that the personnel responsible for the safe
disposal of such reagents are suitably qualified and trained in these techniques and are aware of
the regulations which may be in force.
1 Scope
This International Standard presents a range of sampling and chemical analytical methods suitable for
the analysis of individual chemical species in fire atmospheres. The procedures relate to the analysis of
samples extracted from an apparatus or effluent flow from a fire test rig or physical fire test model and
are not concerned with the specific nature of the fire test.
This International Standard doesn’t cover aerosols (detailed in Reference [3]) and FTIR technique
(detailed in Reference [4]). The gases of environmental interest, such as PAH, dioxins, furans, endocrinal
disturbers, will be developed in a future document by ISO TC92/SC3.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
ISO 13943, Fire safety — Vocabulary
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 13943 apply.
4 Methods of sampling
4.1 General considerations
Sampling is perhaps the most critical part of the procedures for analysis of gases in fire effluents.
Whereas sampling and analysis are commonly in use for many gaseous species in other fields, sampling
from fire atmospheres presents unusual and difficult problems.
The sample presented to the analyser shall be as representative as possible of the test atmosphere,
without having been changed by the sampling system. The sampling procedure should influence the test
atmosphere as little as possible (e.g. by depletion of the test volume). The sampling procedure should be
as uncomplicated as possible, while incorporating all necessary features detailed in this International
Standard. The sampling procedure shall be capable of operating with minimal blockage in the sampling
lines, melting or other disruption of probes, and without allowing condensation of the species for analysis.
IMPORTANT — It is important to appreciate that the overall accuracy of the analysis of fire
effluent species is significantly dependent on the sampling procedures adopted, in particular
the quantification of losses in probes, sampling lines, and filtering systems.
4.2 Concentration and volume fraction
The concentration of fire effluent or of a toxic gas is its mass divided by the volume in which it is
−3
contained. For a fire effluent the typical units are g.m .However, for a toxic gas, concentration is usually
−1
expressed as a volume fraction at T = 298 K and P = 1 atm, and is expressed in terms of µL.L (equivalent
3 3 −6
to cm /m = 10 ).
NOTE 1 The concentration of a gas at a temperature, T, and a pressure, P can be calculated from its volume
fraction (assuming ideal gas behaviour) by multiplying the volume fraction by the density of the gas at that
temperature and pressure.
NOTE 2 Volume fractions of toxic gases used to be expressed in terms of “ppm by volume” but “ppm” is a
−1
deprecated term and therefore “µL.L ” is now used.
4.3 Special considerations
There are many factors that have a direct influence on the specific type of sampling methodology selected
to ensure that a suitable sample is presented to the analyser. For example, consideration shall include
the range of concentrations anticipated, the limits of detection, reactivity of the species of interest,
presence of interferences, and peak and average concentration values. Sampling of the extremely
complex atmosphere produced during combustion requires a very thorough evaluation and assessment
of all potential factors that might affect optimum conditions for sample collection and analysis.
The large number of different products frequently encountered in fire effluents often requires the use
of a variety of sampling procedures and approaches to ensure accurate identification and quantification
of combustion products. The selected sampling procedure also depends on the instrumentation and
analytical procedures available for the specific species being measured.
Sampling may involve either continuous, online analysis (e.g. non-dispersive infrared) or non-continuous
batch sampling (e.g. evacuated flask or bubbler samples). Batch-type sampling can be further subdivided
into two categories:
a) “Instantaneous”, or “grab”;
b) Average, or integrated.
Although there is no sharp distinction between categories a) and b), it is generally understood that grab
samples relate to samples taken over a short time period (i.e. usually less than 1 min), whereas integrated
samples are usually taken over a longer time period (i.e. a substantial portion of the total test period).
In some cases, continuous or semi-continuous online or frequent instantaneous sampling can be well
suited for following the rapidly changing combustion environment and will provide a representative
concentration profile. Frequently however, the minimum detectable limit of the species of interest
requires larger sample volumes than can be taken with these techniques. If this analytical limitation
exists, it is necessary to carry out the sampling over a longer period. While using longer sampling
periods permits the analysis of lower concentrations, this approach has some limitations. For example,
these types of samples permit a determination only of the integrated average concentration obtained
over the sampling period and do not discern any abrupt change in the evolution of the species of interest.
However, abrupt concentration changes can also be missed with instantaneously obtained samples, if
samples are not taken frequently enough.
When batch-sampling procedures are used, it is essential to specify sampling frequency, the starting
time of each sample and the total sampling time. This information is essential in order to ensure proper
evaluation of the data in conjunction with other fire properties that are being monitored (e.g. heat
release, temperatures, mass loss, smoke evolution, flame spread).
2 © ISO 2013 – All rights reserved

Test fires can be classified as “small” (laboratory or “bench” size), “intermediate” or “large” (usually
full-scale). The sampled gases can be hot or near room temperature. It is generally necessary to extract
the gases from the test atmosphere through suitable tubing using a suction pump. Stainless steel tubing,
as short as possible, is often used. In the case of the production of hot gases, the sampling line shall be
heated to at least 100 °C. Several analytical methods require a dry, particulate-free sample. Glass wool
may be used (in most cases) as a particulate filter, with another trap of a drying agent (e.g. calcium
sulfate or calcium chloride) for removing moisture. The traps should be located just before the analyser
and after any heated sections of sampling tubes. Simple cold traps are often insufficient to remove the
quantity of moisture present in fire effluents; however, they can be useful in conjunction with other
filters and traps. The individual sampling and analytical system being used dictates flow requirements
and the necessity for moisture removal. Precautions should be taken to minimize the volume of the
filtering systems to reduce sampling time.
With the exception of hydrogen fluoride (HF), acid gases shall be sampled using glass, epoxy-lined or
PTFE tubes to minimize losses due to reactivity and condensation on the tube surfaces. For hydrogen
fluoride, tubes lined with PTFE shall be used (glass and glass-lined tubes are unsuitable). For species
that are relatively reactive and prone to losses, sampling lines shall be as short as possible, and shall
be heated to a sufficient temperature to avoid condensation. Hydrogen chloride (HCl) and hydrogen
bromide (HBr) can be adsorbed onto soot particles as well as gas sampling lines (including PTFE lines).
For organic materials (e.g. acrolein), unlined stainless steel tubing is suitable but the sampling lines shall
be heated to avoid condensation. Particulate traps, although usually necessary, can be avoided in some
cases and instrument requirements should be checked in this regard.
The location and size of sampling probes is influenced by the size of the test apparatus and the
requirements of the analytical system. The positioning of sampling probes in specific apparatus, however,
is beyond the scope of this International Standard. In general, the possibility of the stratification of gases
in chambers without good mixing shall be considered and sampling too near the wall of a test chamber
should be avoided.
Calibration of the entire sampling and analysis system, rather than just the analysis system, is
recommended in order to ensure that any losses in the sample route can be allowed for. All calibrations
should, therefore, take into account such factors as gas leakage (both into and out of the sampling lines)
and the adsorption of gases onto probes, sampling lines, filters and other components. Calibration gases
are often obtainable in cylinders; however, it is advisable that the concentration stated by the supplier
be verified by an independent analysis. This is especially true of reactive gases such as HCl and HF,
which can decay over relatively short time periods even in a closed cylinder. The calibration gas shall be
introduced at the sampling probe and allowed to travel the same course as a test gas, through filters and
traps if present, to the analyser or sampling medium.
4.4 Sampling using gas-solution absorbers
Absorption of gases in solution by the use of gas-washing bottles, bubblers, impingers, etc. all rely on the
same principle. The test atmosphere is drawn or pushed through the absorbing media at a measured rate
for a specified period of time. At the end of the sampling period, the solution is analysed for the species of
interest (e.g. the chloride ion for absorption of hydrogen chloride gas in water). Assuming 100 % efficiency
(see discussion below), it is possible to calculate the concentration of the species in the gas phase, as
measured in the solution. A typical equation for calculating concentrations is presented in Formula (1):
ρ ××Vm(/m )
SG S
ρ = (1)
G
qt×
where
ρ is the gas concentration;
G
ρ is the solution concentration;
S
V is the volume, expressed in litres, of solution;
m /m is the ratio of atomic or molecular weights for the gaseous species, G, and solution species,
G S
S, if different, e.g. HCl/Cl);
q is the rate of gas flow, expressed in litres per minute, through the impinger;
t is the time, in minutes of gas flow.
The volume fraction of the gas, X , can be calculated by dividing the concentration by the density d,
G
of the gas at the ambient temperature and pressure. This density can be found, assuming ideal gas
behaviour, as follows:
M
G
d= (2)
H
H
X =ρ (3)
GG
M
G
where
M is the molar mass of the gaseous species, G;
G
H is the gaseous volume occupied by 1 mol of an ideal gas at the relevant ambient pressure (P)
and temperature (T).[ H = 8,314 J.K-1.mol-1 × 1 mol × T/P ]
- −3
EXAMPLE Suppose that the measured solution concentration of chloride ion (Cl ) was 0,006 g × dm in
0,025 dm of solution, the ambient thermodynamic temperature was 293,15 K, the ambient pressure was 1 bar
5 5 −3 3
(10 Pa = 10 J × m ), and the flow rate of gas was 0,25 dm /min for 2 min. Then the gas concentration of hydrogen
chloride is given by:
−3 3 3
ρG = [0,006 g.dm x 0,025 dm x (36,461 / 35,453)] / [0,25 dm /min x 2 min]
ρG = [0,00015 g x 1,028] / 0,50 dm
−3 −3
ρG = 0,0003084 g.dm = 308,4 mg.m
The volume fraction of hydrogen chloride is given by:
−3 −1 −1 −3 −1
X = 308,4 mg.m x (8,314 J.K .mol x 293,15 K / 105 J.m ) / 36,461 g.mol
G
−3 3 −1 −1
X = 308,4 mg.m x 0,02437 m .mol / 36,461 g.mol
G
X = 0,0002061 = 206,1 µL/L
G
The volume of the absorber solution and the total flow of gas directly affect the ratio of the gas and
solution concentrations. For a given gas concentration, the smaller the solution volume and/or the
larger the gas volume sampled, the higher the solution concentration. The choice of sampling conditions
4 © ISO 2013 – All rights reserved

is dictated by the requirements of the analytical technique, including the volume and sampling rate
tolerated, expected concentration of gas in the test atmosphere, necessity for frequent sampling, etc.
The efficiency of absorption of a gas in liquid is affected by the following:
a) Solubility of the gas in the solution;
b) Physical characteristics of the absorber;
c) Ratio of gas flow rate to solution volume.
Generally, absorption efficiency is estimated empirically by allowing the flow of a known concentration
of the gas of interest through a series of impingers and measuring the “break-through” from the first
impinger (i.e. whatever is collected in the other traps). Another check on the efficiency of a given
flow/impinger system is to conduct a series of experiments with a known concentration of gas, using
different impingers and various flow rates. In practice, however, the choice of apparatus is limited, and
gas flow rates and trapping solution volumes are based on Formula (1), taking into account the known
characteristics of the analysis methods.
There are basically four types of gas-solution absorbers: simple gas-washing bottles (including midget
impingers), spiral or helical absorbers, packed glass-bead columns and fritted bubblers. The gas-washing
bottles, or impingers, function by drawing the gas through a tube (usually with a constricted opening),
which is immersed in the trapping liquid/solution. This type is most suitable for highly soluble gases
because contact time between solution and gas is short and bubble size is relatively large. For less soluble
species, the other absorbers offer longer contact time and/or smaller bubble size (which increases relative
surface contact). The spiral or helical absorbers are built in specialized shapes to allow a long contact
time. The flow rate in these bubblers is limited because of the possibility of trapping solution over-flow
with high flow rates. Packed glass-bead columns allow increased gas/liquid contact by dispersing the
bubbles through a bed of glass beads. Flow rates can be higher than for the spiral absorbers.
The fritted bubblers contain a sintered or fritted disc on the gas inlet tube to disperse the gas into
fine bubbles (the size of the bubbles is dependent on the porosity of the frit). It is necessary to exercise
caution in using such bubblers so that frothing does not occur and so that the coalescence of the
fine bubbles does not defeat the purpose of the frit. Also, it is necessary to filter smoky atmospheres
(containing particulates or liquid aerosols) before drawing them through a fritted bubbler in order to
prevent clogging of the frit (which occurs very easily). Such clogging can also occur from the build-up of
wax-like deposits. Certain gas species (e.g. HCl) can be absorbed onto a filter, especially if particulates
have also been trapped on the filter.
Note that very soluble gases, such as HCl and HF, can cause water to be sucked back along the sampling
tube. With these gases, it is often necessary to include an empty bubbler to act as a liquid trap.
4.5 Sampling using solid sorption tubes
Solid sorption tubes are an alternative method to gas-solution absorbers for sampling certain gases
from fire effluents. Following sampling, the species of interest is desorbed in water and its analysis can
then be performed in a way similar to that for aqueous solution absorbers.
The advantages of solid sorption tubes over solution absorbers are
a) Ease of handling,
b) Compactness,
c) High absorption efficiency,
d) Ability to be located directly at the point of sampling.
This latter advantage can have dramatic consequences in the measurement of HF, HCl and HBr in fire
effluents because these species are easily lost to the inside surfaces of sampling lines. With solid sorption
tubes (except in areas of extreme heat), a sampling line is not necessary before the sorption tube itself. All
associated hardware (e.g. valves, flow meters and pumps) can be located behind the tubes, even far from
the sampling point. This ensures that the sample is as representative as possible of the fire atmosphere.
Much experience has been gained through using solid sorption tubes, for example in the field of
atmospheric sampling and for staff exposure monitoring in the workplace. Similar tubes have been re-
[5],[6]
examined for potential use in sampling fire effluents. Two studies were carried out using solid
sorbents to measure certain gases in real building fires. These tubes were located in portable sampling
boxes carried by the firemen who were actually fighting the fire. Tubes of similar design, containing
[7] [8]
activated charcoal, have been used to sample HF and HCN. Tubes containing flake sodium hydroxide
[9]
for the absorption of acid gases have also been described. A procedure for successive (e.g. every 3 min
or 5 min) sampling with tubes at one location without removing or replacing tubes has been described
[8]
for sampling gases in full-scale fires.
Calculation of the original gas concentration (e.g. HCl) from the representative species recovered in the

desorbent solution (e.g. Cl ) is the same as that described for solution absorbers, except that the solution
volume is the volume of desorbent liquid. In practice, a small aliquot, rather than the entire quantity, of
the desorbent solution is often used for the analysis so it is necessary to take this factor into account.
The same considerations that apply to solution absorbers, with respect to inefficient absorption,
breakthrough and the relationship of volume sampled to gas and solution concentration, also apply
to the use of solid sorbents. Instead of bubble size, it is the particulate size of the absorbent that is
important (large particles offer less surface area per unit volume and more opportunity for channelling,
smaller particles can cause the tube to plug when sampling moist gas). The tubes should be small enough
(typically 100 mm long, 6 mm OD) such that two tubes can easily be placed in series to allow for the
possibility of “breakthrough” from the first tube.
Solid sorption tubes are subject to plugging due to soot collection. This can be recognized during sampling
by a decrease in sample flow rate. The same flow rate should be maintained over the duration of sampling
using a constant flow device; otherwise, an error is introduced in the calculation of gas concentration.
A glass wool plug loosely packed into the inlet of the tube reduces the tendency to blocking from soot.
Thermal desorption of the adsorbed sample is also possible; the sample tube is heated in an inert gas
stream thus driving off the sample without the need for a liquid solution stage.
4.6 Sampling for spectrometric or spectrophotometric analysis
The uses of spectrometric analysis [direct mass spectrometry (MS)] and spectrophotometric analysis
[both non-dispersive infrared (NDIR) and Fourier transform infrared (FTIR)] have become quite
[9], [10], [11]
widespread in recent years. FTIR techniques in particular are becoming more prominent.  The
continuous measurement by means of NDIR analysis (e.g. for CO and CO ) is now so common that several
different companies manufacture commercial instruments designed for this purpose.
For two of the methods (direct MS and FTIR), it is important that the fire effluents be free from particles
before they are introduced into the analyser. The filter used, which is often placed at the junction of the
sampling line and the test chamber, shall be inert so it does not react with any of the gases of interest.
1)
A stainless steel filter unit containing a glass-fibre filter (e.g. Whatman multigrade GMF150 micro-
filter, 1 µm, 47 mm in diameter) has been found suitable. The sample line and the filter (and for FTIR
also the absorption cell) are heated to a temperature above 120 °C (120 °C to 150 °C has been found to
be suitable), in order to prevent liquid water from forming, to prevent water-soluble gases (e.g. HCN and
the acid gases) from dissolving and other gases from condensing.
When a filter is used, it is necessary to check the extent to which the species of interest have been
retained by the filter. If retention occurs, it is necessary to correct the measured concentrations. The
amount of retained material is dependent principally on the type and capacity of the filter used, the
nature of the species and the volume of gas passing through the filter.
1) The Whatman GMF150 filter is an example of a suitable product available commercially. This information is
given for the convenience of users of ISO 19701 and does not constitute an endorsement by ISO of this product.
6 © ISO 2013 – All rights reserved

4.7 Sampling using gas bags
Sampling with gas bags can be used for most analytical methods. The test atmosphere is pumped, or
allowed to flow under pressure, into a gas bag at a measured constant rate for a measured time period,
thus obtaining a known volume of sample in the bag. It is necessary to filter the fire effluents before
passing into the bag; simple in-line glass wool filters for particulates, and calcium chloride filters for
moisture, have been found effective. However, a calcium chloride absorbent removes water vapour and
water-soluble gases. At the end of the sampling period, the bag may be stored before it is connected to
the analyser; but it is important to appreciate that storage times in bags should be kept to a minimum,
preferably less than 1 h. Gases such as HF and HCl can dissolve in condensed/trapped water and this
reduces the concentration presented to the analyser.
Bags shall be gas-tight and inert and those with a lining of polyvinylfluoride (PVF) are recommended.
Table 1 summarizes the analytical methods and types of sample required for each method described in
this International Standard.
Table 1 — Type of sampling for the analytical methods described
Gas Analytical Method Type of sample for analysis
Carbon monoxide (CO) NDIR gas
Carbon dioxide (CO ) NDIR gas
Oxygen (O ) Paramagnetism gas
Hydrogen cyanide(HCN) Colourimetry (Chloramine T) solution
Colourimetry (picric acid) solution
HPIC solution
Hydrogen chloride (HCl) ISE solution
Hydrogen bromide (HBr) HPIC solution
titrimetry solution
Hydrogen fluoride (HF) ISE solution
HPIC solution
Online ISE solution
Nitrogen oxides (NO ) Chemiluminescence gas
x
Nitrogen dioxide (NO ) HPIC solution
Nitrogen monoxide (NO) Gfx-IR gas
Acrolein (2-propenal) Colourimetry solution
HPLC solution
GC-MS gas
Formaldehyde (Methanal) Colourimetry solution
HPLC solution
Acetaldehyde (Ethanal) HPLC solution
GC-MS solution
Total aldehydes Colourimetry solution
Sulfur dioxide (SO ) HPIC solution
Carbon disulphide (CS ) GC-MS, GC/FPD gas
Hydrogene Sulphide (H S) HPIC solution
GC/FPD solution
Ammonia (NH ) Colourimetry solution
HPIC solution
Titration solution
Antimony compounds AAS or ICP solution
Arsenic compounds AAS or ICP solution
Phosphorus ICP solution
Phosphates Colourimetry solution
HPIC solution
Table 1 (continued)
Gas Analytical Method Type of sample for analysis
Phenol HPLC solution
GC-MS gas
Benzene HPLC solution
GC-MS gas
Toluene (Methylbenzene) HPLC solution
GC-MS gas
Styrene (Phenylethene) HPLC solution
GC-MS gas
Acrylonitrile GC-MS solution
Formic acid HPIC solution
HPLC solution
Hydrocarbons (total) FID gas
5 Analytical methods for fire gases
5.1 Carbon monoxide by non-dispersive infrared spectroscopy (NDIR)
5.1.1 Application and limitations
The method provides a continuous analysis/monitoring capability for carbon monoxide. The analysers
are commonly self-contained instruments and include sample pumps, sample filtering, analysis
hardware and electronics. Direct readout of carbon monoxide concentration is usually provided (either
digital or analogue) together with an output for connecting recording devices. Instruments providing
carbon monoxide and carbon dioxide analyses in the same case are available.
5.1.2 Sensitivity and selectivity
Instruments are available for measuring carbon monoxide from below 1 µl/l to 50 000 µl/l (5 %) and
more with a common resolution of 0,1 % of the selected range. Interferences with nitrogen compounds,
water and carbon dioxide have been described.
5.1.3 Other considerations
Multi-range instruments are available to cover all concentrations likely to be encountered in fire
effluents, which will normally be over the range 500 µl/l to 50 000 µl/l. The method is non-destructive
and the sample can be “passed on” for analysis of other compounds, taking into account that some
components of the sample, e.g. particles, acid gases and water, can be lost in filtering and sampling.
5.1.4 Analysis principles
NDIR instruments operate by passing a beam of infrared (IR) radiation of a fixed wavelength through
the sample. The IR wavelength used is that which is in a main spectroscopic absorption region for carbon
monoxide (and which is not absorbed significantly by other species). The absorption of the radiation is
a measure of the concentration of carbon monoxide in the internal gas sample cell. Refinements may
include a “double beam” system that can compensate for interfering species and other effects.
5.1.5 Procedure
See Clause 4 for principles of sampling and C.2 for general principles of the method. However, for the
analysis of carbon monoxide by NDIR, the specific information in 5.1.6 to 5.1.10 is relevant.
8 © ISO 2013 – All rights reserved

Normally, the instruments have only to be powered and the sampling line attached. It is usually
convenient to set one concentration range within which the analysis is carried out and, therefore, it is
desirable that the recording system used (e.g. data logger) has sufficient resolution for the chosen range.
5.1.6 Sampling
It is essential that the sample stream entering the instrument be treated to remove particulates and
vapours condensable under ambient conditions. Simple in-line glass wool and calcium chloride filters
have been found to be effective. Sample flow rates on the order of a few litres per minute are common
and where the sampling point is many metres away from the instrument, a separately pumped, heated
sample line with a higher flow rate can be used with the instrument sample port “teed” into this.
5.1.7 Analysis
There is no requirement for additional analytical procedures.
5.1.8 Calibration
Calibration is achieved through the introduction of standard (preferably certificated) gas mixtures and
“zero gas” (which may be high-purity nitrogen) as provided commercially in pressurized cylinders. It is
desirable to calibrate the instrument by introducing the sample both at the inlet port and at the remote
sampling point. On multi-range instruments, it is usually possible to calibrate on the lowest range if more
than one range is to be routinely used. However, calibration within the range to be used for measurement
is recommended. It should be noted that the ambient concentration could vary significantly from these
values depending on location. It is, therefore, important to recognize that a significant ambient reading
can be obtained at the beginning of a fire experiment due to local conditions. The calibration and the
analysis of the fire effluents shall be carried out using the same flow-rate through the analyser.
5.1.9 Calculations
There are no calculations required; the carbon monoxide concentration is obtained by direct readout or
(more usually) through a connection to an electronic recording apparatus.
Note that some instruments have a nonlinear scale but have the electronic outpu
...


INTERNATIONAL ISO
STANDARD 19701
Second edition
2013-04-01
Methods for sampling and analysis of
fire effluents
Méthodes d’échantillonnage et d’analyse des effluents du feu
Reference number
©
ISO 2013
© ISO 2013
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2013 – All rights reserved

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Methods of sampling . 1
4.1 General considerations . 1
4.2 Concentration and volume fraction . 2
4.3 Special considerations . 2
4.4 Sampling using gas-solution absorbers . 3
4.5 Sampling using solid sorption tubes . 5
4.6 Sampling for spectrometric or spectrophotometric analysis . 6
4.7 Sampling using gas bags . 7
5 Analytical methods for fire gases . 8
5.1 Carbon monoxide by non-dispersive infrared spectroscopy (NDIR) . 8
5.2 Carbon dioxide by non dispersive infrared spectroscopy (NDIR) . 9
5.3 Oxygen by paramagnetism .11
5.4 Hydrogen cyanide .12
5.5 Hydrogen chloride and hydrogen bromide .18
5.6 Hydrogen fluoride .25
5.7 Oxides of nitrogen .29
5.8 Acrolein .35
5.9 Formaldehyde .42
5.10 Acetaldehyde .47
5.11 Total aldehydes by colourimetry .48
5.12 Sulfur dioxide by high performance ion chromatography (HPIC) .50
5.13 Carbon disulfide by GC-MS in gas phase .52
5.14 Hydrogen sulphide .54
5.15 Ammonia .57
5.16 Antimony compounds by atomic absorption spectrophotometry (AAS) or inductively
coupled plasma emission spectrometry (ICP) .60
5.17 Arsenic compounds by atomic absorption spectrophotometry (AAS) or inductively
coupled plasma emission spectrometry (ICP) .62
5.18 Phosphorus by inductively coupled plasma emission spectrometry (ICP) .63
5.19 Phosphates .65
5.20 Phenol .69
5.21 Benzene .72
5.22 Toluene (Methylbenzene) .76
5.23 Styrene (Phenylethene) .80
5.24 Acrylonitrile and other nitriles by GC-MS in gas phase .83
5.25 Formic acid .86
5.26 Total hydrocarbons by FID . .89
5.27 Isocyanates .89
5.28 Oxygenated organic species .89
Annex A (informative) Species and measurement techniques currently deemed unsuitable in
fire effluents .90
Annex B (informative) Colour-change chemical detection tubes .92
Annex C (informative) Quantitative instrumental methods .93
Annex D (informative) Hydrogen fluoride by continuous online ion selective electrode .107
Bibliography .110
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International
Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies
casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 19701 was prepared by Technical Committee ISO/TC 92, Fire safety, Subcommittee SC 3, Fire threat
to people and environment.
This second edition cancels and replaces the first edition (ISO 19701:2005).
iv © ISO 2013 – All rights reserved

Introduction
The analysis of fire gases for use in toxic hazard and life threat assessment and other purposes (e.g.
impact on the environment) is a great challenge for the analyst. Fire atmospheres are by nature hostile
environments. Temperatures in excess of 1 000 °C are common, the gas phase can contain many corrosive,
toxic, irritant or combustible species together with relatively large quantities of condensable water.
These properties are largely incompatible with most instrumental analytical methods where a “clean”
sample is required. This poses many problems both for the qualification and quantification of the chemical
species and particulates in fire atmospheres. In presenting a sample to the measuring instrument that it
will tolerate, it can be necessary to filter particulates and remove other species. Losses in the sampling
train must therefore be quantifiable and taken into account in the final analysis.
Techniques also exist for measuring chemical species in situ; this will be the subject of a future document.
The methods described in Clause 5 have been used successfully by a number of laboratories. Studies of
repeatability and reproducibility of many of the methods covered in this International Standard have
[1] [2]
been taken from AFNOR NF X70-100-1 and AFAP-3.
For methods that involve a commercial instrument, uncertainty in the measured values may be estimated
from the manufacturer’s data and other information, e.g. allowance for losses in the sampling process.
For other methods, uncertainty in the measured values can occur through a variety of reasons, such as
sensitivity to the strength of reagents or the visibility of a colourimetric end point. In these cases, it is
assumed that best practice by qualified personnel is applied.
This International Standard is structured as follows.
— Clause 1 describes the scope of this standard
— Clause 4 describes methods of sampling.
— Clause 5 describes analytical methods for gases in fire atmospheres:
— Annex A provides information on techniques that were found not suitable with fire effluents.
— Annex B briefly describes the use of aspirated chemical colour-change tubes.
— Annex C is a summary of the main instrumental methods available for fire gas analysis, expanding
the information provided under the clauses for each individual chemical species.
— Annex D presents a method for continuous measurement of HF concentration using ion selective
electrode.
INTERNATIONAL STANDARD ISO 19701:2013(E)
Methods for sampling and analysis of fire effluents
SAFETY PRECAUTIONS — Due consideration must be given to the fact that both the fire gases
for analysis and many of the reagents used for their analysis can be toxic and/or present serious
health hazards. It is assumed throughout that the procedures described in this document will
be carried out by suitably qualified professional personnel, adequately trained in the hazards
and risks associated with such analyses and aware of any safety regulations that may be in force.
Consideration must also be given to the safe and ecologically acceptable disposal of all chemicals
used for analyses. This can require extensive treatment prior to release of the waste into the
environment. Again, it is assumed in this document that the personnel responsible for the safe
disposal of such reagents are suitably qualified and trained in these techniques and are aware of
the regulations which may be in force.
1 Scope
This International Standard presents a range of sampling and chemical analytical methods suitable for
the analysis of individual chemical species in fire atmospheres. The procedures relate to the analysis of
samples extracted from an apparatus or effluent flow from a fire test rig or physical fire test model and
are not concerned with the specific nature of the fire test.
This International Standard doesn’t cover aerosols (detailed in Reference [3]) and FTIR technique
(detailed in Reference [4]). The gases of environmental interest, such as PAH, dioxins, furans, endocrinal
disturbers, will be developed in a future document by ISO TC92/SC3.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
ISO 13943, Fire safety — Vocabulary
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 13943 apply.
4 Methods of sampling
4.1 General considerations
Sampling is perhaps the most critical part of the procedures for analysis of gases in fire effluents.
Whereas sampling and analysis are commonly in use for many gaseous species in other fields, sampling
from fire atmospheres presents unusual and difficult problems.
The sample presented to the analyser shall be as representative as possible of the test atmosphere,
without having been changed by the sampling system. The sampling procedure should influence the test
atmosphere as little as possible (e.g. by depletion of the test volume). The sampling procedure should be
as uncomplicated as possible, while incorporating all necessary features detailed in this International
Standard. The sampling procedure shall be capable of operating with minimal blockage in the sampling
lines, melting or other disruption of probes, and without allowing condensation of the species for analysis.
IMPORTANT — It is important to appreciate that the overall accuracy of the analysis of fire
effluent species is significantly dependent on the sampling procedures adopted, in particular
the quantification of losses in probes, sampling lines, and filtering systems.
4.2 Concentration and volume fraction
The concentration of fire effluent or of a toxic gas is its mass divided by the volume in which it is
−3
contained. For a fire effluent the typical units are g.m .However, for a toxic gas, concentration is usually
−1
expressed as a volume fraction at T = 298 K and P = 1 atm, and is expressed in terms of µL.L (equivalent
3 3 −6
to cm /m = 10 ).
NOTE 1 The concentration of a gas at a temperature, T, and a pressure, P can be calculated from its volume
fraction (assuming ideal gas behaviour) by multiplying the volume fraction by the density of the gas at that
temperature and pressure.
NOTE 2 Volume fractions of toxic gases used to be expressed in terms of “ppm by volume” but “ppm” is a
−1
deprecated term and therefore “µL.L ” is now used.
4.3 Special considerations
There are many factors that have a direct influence on the specific type of sampling methodology selected
to ensure that a suitable sample is presented to the analyser. For example, consideration shall include
the range of concentrations anticipated, the limits of detection, reactivity of the species of interest,
presence of interferences, and peak and average concentration values. Sampling of the extremely
complex atmosphere produced during combustion requires a very thorough evaluation and assessment
of all potential factors that might affect optimum conditions for sample collection and analysis.
The large number of different products frequently encountered in fire effluents often requires the use
of a variety of sampling procedures and approaches to ensure accurate identification and quantification
of combustion products. The selected sampling procedure also depends on the instrumentation and
analytical procedures available for the specific species being measured.
Sampling may involve either continuous, online analysis (e.g. non-dispersive infrared) or non-continuous
batch sampling (e.g. evacuated flask or bubbler samples). Batch-type sampling can be further subdivided
into two categories:
a) “Instantaneous”, or “grab”;
b) Average, or integrated.
Although there is no sharp distinction between categories a) and b), it is generally understood that grab
samples relate to samples taken over a short time period (i.e. usually less than 1 min), whereas integrated
samples are usually taken over a longer time period (i.e. a substantial portion of the total test period).
In some cases, continuous or semi-continuous online or frequent instantaneous sampling can be well
suited for following the rapidly changing combustion environment and will provide a representative
concentration profile. Frequently however, the minimum detectable limit of the species of interest
requires larger sample volumes than can be taken with these techniques. If this analytical limitation
exists, it is necessary to carry out the sampling over a longer period. While using longer sampling
periods permits the analysis of lower concentrations, this approach has some limitations. For example,
these types of samples permit a determination only of the integrated average concentration obtained
over the sampling period and do not discern any abrupt change in the evolution of the species of interest.
However, abrupt concentration changes can also be missed with instantaneously obtained samples, if
samples are not taken frequently enough.
When batch-sampling procedures are used, it is essential to specify sampling frequency, the starting
time of each sample and the total sampling time. This information is essential in order to ensure proper
evaluation of the data in conjunction with other fire properties that are being monitored (e.g. heat
release, temperatures, mass loss, smoke evolution, flame spread).
2 © ISO 2013 – All rights reserved

Test fires can be classified as “small” (laboratory or “bench” size), “intermediate” or “large” (usually
full-scale). The sampled gases can be hot or near room temperature. It is generally necessary to extract
the gases from the test atmosphere through suitable tubing using a suction pump. Stainless steel tubing,
as short as possible, is often used. In the case of the production of hot gases, the sampling line shall be
heated to at least 100 °C. Several analytical methods require a dry, particulate-free sample. Glass wool
may be used (in most cases) as a particulate filter, with another trap of a drying agent (e.g. calcium
sulfate or calcium chloride) for removing moisture. The traps should be located just before the analyser
and after any heated sections of sampling tubes. Simple cold traps are often insufficient to remove the
quantity of moisture present in fire effluents; however, they can be useful in conjunction with other
filters and traps. The individual sampling and analytical system being used dictates flow requirements
and the necessity for moisture removal. Precautions should be taken to minimize the volume of the
filtering systems to reduce sampling time.
With the exception of hydrogen fluoride (HF), acid gases shall be sampled using glass, epoxy-lined or
PTFE tubes to minimize losses due to reactivity and condensation on the tube surfaces. For hydrogen
fluoride, tubes lined with PTFE shall be used (glass and glass-lined tubes are unsuitable). For species
that are relatively reactive and prone to losses, sampling lines shall be as short as possible, and shall
be heated to a sufficient temperature to avoid condensation. Hydrogen chloride (HCl) and hydrogen
bromide (HBr) can be adsorbed onto soot particles as well as gas sampling lines (including PTFE lines).
For organic materials (e.g. acrolein), unlined stainless steel tubing is suitable but the sampling lines shall
be heated to avoid condensation. Particulate traps, although usually necessary, can be avoided in some
cases and instrument requirements should be checked in this regard.
The location and size of sampling probes is influenced by the size of the test apparatus and the
requirements of the analytical system. The positioning of sampling probes in specific apparatus, however,
is beyond the scope of this International Standard. In general, the possibility of the stratification of gases
in chambers without good mixing shall be considered and sampling too near the wall of a test chamber
should be avoided.
Calibration of the entire sampling and analysis system, rather than just the analysis system, is
recommended in order to ensure that any losses in the sample route can be allowed for. All calibrations
should, therefore, take into account such factors as gas leakage (both into and out of the sampling lines)
and the adsorption of gases onto probes, sampling lines, filters and other components. Calibration gases
are often obtainable in cylinders; however, it is advisable that the concentration stated by the supplier
be verified by an independent analysis. This is especially true of reactive gases such as HCl and HF,
which can decay over relatively short time periods even in a closed cylinder. The calibration gas shall be
introduced at the sampling probe and allowed to travel the same course as a test gas, through filters and
traps if present, to the analyser or sampling medium.
4.4 Sampling using gas-solution absorbers
Absorption of gases in solution by the use of gas-washing bottles, bubblers, impingers, etc. all rely on the
same principle. The test atmosphere is drawn or pushed through the absorbing media at a measured rate
for a specified period of time. At the end of the sampling period, the solution is analysed for the species of
interest (e.g. the chloride ion for absorption of hydrogen chloride gas in water). Assuming 100 % efficiency
(see discussion below), it is possible to calculate the concentration of the species in the gas phase, as
measured in the solution. A typical equation for calculating concentrations is presented in Formula (1):
ρ ××Vm(/m )
SG S
ρ = (1)
G
qt×
where
ρ is the gas concentration;
G
ρ is the solution concentration;
S
V is the volume, expressed in litres, of solution;
m /m is the ratio of atomic or molecular weights for the gaseous species, G, and solution species,
G S
S, if different, e.g. HCl/Cl);
q is the rate of gas flow, expressed in litres per minute, through the impinger;
t is the time, in minutes of gas flow.
The volume fraction of the gas, X , can be calculated by dividing the concentration by the density d,
G
of the gas at the ambient temperature and pressure. This density can be found, assuming ideal gas
behaviour, as follows:
M
G
d= (2)
H
H
X =ρ (3)
GG
M
G
where
M is the molar mass of the gaseous species, G;
G
H is the gaseous volume occupied by 1 mol of an ideal gas at the relevant ambient pressure (P)
and temperature (T).[ H = 8,314 J.K-1.mol-1 × 1 mol × T/P ]
- −3
EXAMPLE Suppose that the measured solution concentration of chloride ion (Cl ) was 0,006 g × dm in
0,025 dm of solution, the ambient thermodynamic temperature was 293,15 K, the ambient pressure was 1 bar
5 5 −3 3
(10 Pa = 10 J × m ), and the flow rate of gas was 0,25 dm /min for 2 min. Then the gas concentration of hydrogen
chloride is given by:
−3 3 3
ρG = [0,006 g.dm x 0,025 dm x (36,461 / 35,453)] / [0,25 dm /min x 2 min]
ρG = [0,00015 g x 1,028] / 0,50 dm
−3 −3
ρG = 0,0003084 g.dm = 308,4 mg.m
The volume fraction of hydrogen chloride is given by:
−3 −1 −1 −3 −1
X = 308,4 mg.m x (8,314 J.K .mol x 293,15 K / 105 J.m ) / 36,461 g.mol
G
−3 3 −1 −1
X = 308,4 mg.m x 0,02437 m .mol / 36,461 g.mol
G
X = 0,0002061 = 206,1 µL/L
G
The volume of the absorber solution and the total flow of gas directly affect the ratio of the gas and
solution concentrations. For a given gas concentration, the smaller the solution volume and/or the
larger the gas volume sampled, the higher the solution concentration. The choice of sampling conditions
4 © ISO 2013 – All rights reserved

is dictated by the requirements of the analytical technique, including the volume and sampling rate
tolerated, expected concentration of gas in the test atmosphere, necessity for frequent sampling, etc.
The efficiency of absorption of a gas in liquid is affected by the following:
a) Solubility of the gas in the solution;
b) Physical characteristics of the absorber;
c) Ratio of gas flow rate to solution volume.
Generally, absorption efficiency is estimated empirically by allowing the flow of a known concentration
of the gas of interest through a series of impingers and measuring the “break-through” from the first
impinger (i.e. whatever is collected in the other traps). Another check on the efficiency of a given
flow/impinger system is to conduct a series of experiments with a known concentration of gas, using
different impingers and various flow rates. In practice, however, the choice of apparatus is limited, and
gas flow rates and trapping solution volumes are based on Formula (1), taking into account the known
characteristics of the analysis methods.
There are basically four types of gas-solution absorbers: simple gas-washing bottles (including midget
impingers), spiral or helical absorbers, packed glass-bead columns and fritted bubblers. The gas-washing
bottles, or impingers, function by drawing the gas through a tube (usually with a constricted opening),
which is immersed in the trapping liquid/solution. This type is most suitable for highly soluble gases
because contact time between solution and gas is short and bubble size is relatively large. For less soluble
species, the other absorbers offer longer contact time and/or smaller bubble size (which increases relative
surface contact). The spiral or helical absorbers are built in specialized shapes to allow a long contact
time. The flow rate in these bubblers is limited because of the possibility of trapping solution over-flow
with high flow rates. Packed glass-bead columns allow increased gas/liquid contact by dispersing the
bubbles through a bed of glass beads. Flow rates can be higher than for the spiral absorbers.
The fritted bubblers contain a sintered or fritted disc on the gas inlet tube to disperse the gas into
fine bubbles (the size of the bubbles is dependent on the porosity of the frit). It is necessary to exercise
caution in using such bubblers so that frothing does not occur and so that the coalescence of the
fine bubbles does not defeat the purpose of the frit. Also, it is necessary to filter smoky atmospheres
(containing particulates or liquid aerosols) before drawing them through a fritted bubbler in order to
prevent clogging of the frit (which occurs very easily). Such clogging can also occur from the build-up of
wax-like deposits. Certain gas species (e.g. HCl) can be absorbed onto a filter, especially if particulates
have also been trapped on the filter.
Note that very soluble gases, such as HCl and HF, can cause water to be sucked back along the sampling
tube. With these gases, it is often necessary to include an empty bubbler to act as a liquid trap.
4.5 Sampling using solid sorption tubes
Solid sorption tubes are an alternative method to gas-solution absorbers for sampling certain gases
from fire effluents. Following sampling, the species of interest is desorbed in water and its analysis can
then be performed in a way similar to that for aqueous solution absorbers.
The advantages of solid sorption tubes over solution absorbers are
a) Ease of handling,
b) Compactness,
c) High absorption efficiency,
d) Ability to be located directly at the point of sampling.
This latter advantage can have dramatic consequences in the measurement of HF, HCl and HBr in fire
effluents because these species are easily lost to the inside surfaces of sampling lines. With solid sorption
tubes (except in areas of extreme heat), a sampling line is not necessary before the sorption tube itself. All
associated hardware (e.g. valves, flow meters and pumps) can be located behind the tubes, even far from
the sampling point. This ensures that the sample is as representative as possible of the fire atmosphere.
Much experience has been gained through using solid sorption tubes, for example in the field of
atmospheric sampling and for staff exposure monitoring in the workplace. Similar tubes have been re-
[5],[6]
examined for potential use in sampling fire effluents. Two studies were carried out using solid
sorbents to measure certain gases in real building fires. These tubes were located in portable sampling
boxes carried by the firemen who were actually fighting the fire. Tubes of similar design, containing
[7] [8]
activated charcoal, have been used to sample HF and HCN. Tubes containing flake sodium hydroxide
[9]
for the absorption of acid gases have also been described. A procedure for successive (e.g. every 3 min
or 5 min) sampling with tubes at one location without removing or replacing tubes has been described
[8]
for sampling gases in full-scale fires.
Calculation of the original gas concentration (e.g. HCl) from the representative species recovered in the

desorbent solution (e.g. Cl ) is the same as that described for solution absorbers, except that the solution
volume is the volume of desorbent liquid. In practice, a small aliquot, rather than the entire quantity, of
the desorbent solution is often used for the analysis so it is necessary to take this factor into account.
The same considerations that apply to solution absorbers, with respect to inefficient absorption,
breakthrough and the relationship of volume sampled to gas and solution concentration, also apply
to the use of solid sorbents. Instead of bubble size, it is the particulate size of the absorbent that is
important (large particles offer less surface area per unit volume and more opportunity for channelling,
smaller particles can cause the tube to plug when sampling moist gas). The tubes should be small enough
(typically 100 mm long, 6 mm OD) such that two tubes can easily be placed in series to allow for the
possibility of “breakthrough” from the first tube.
Solid sorption tubes are subject to plugging due to soot collection. This can be recognized during sampling
by a decrease in sample flow rate. The same flow rate should be maintained over the duration of sampling
using a constant flow device; otherwise, an error is introduced in the calculation of gas concentration.
A glass wool plug loosely packed into the inlet of the tube reduces the tendency to blocking from soot.
Thermal desorption of the adsorbed sample is also possible; the sample tube is heated in an inert gas
stream thus driving off the sample without the need for a liquid solution stage.
4.6 Sampling for spectrometric or spectrophotometric analysis
The uses of spectrometric analysis [direct mass spectrometry (MS)] and spectrophotometric analysis
[both non-dispersive infrared (NDIR) and Fourier transform infrared (FTIR)] have become quite
[9], [10], [11]
widespread in recent years. FTIR techniques in particular are becoming more prominent.  The
continuous measurement by means of NDIR analysis (e.g. for CO and CO ) is now so common that several
different companies manufacture commercial instruments designed for this purpose.
For two of the methods (direct MS and FTIR), it is important that the fire effluents be free from particles
before they are introduced into the analyser. The filter used, which is often placed at the junction of the
sampling line and the test chamber, shall be inert so it does not react with any of the gases of interest.
1)
A stainless steel filter unit containing a glass-fibre filter (e.g. Whatman multigrade GMF150 micro-
filter, 1 µm, 47 mm in diameter) has been found suitable. The sample line and the filter (and for FTIR
also the absorption cell) are heated to a temperature above 120 °C (120 °C to 150 °C has been found to
be suitable), in order to prevent liquid water from forming, to prevent water-soluble gases (e.g. HCN and
the acid gases) from dissolving and other gases from condensing.
When a filter is used, it is necessary to check the extent to which the species of interest have been
retained by the filter. If retention occurs, it is necessary to correct the measured concentrations. The
amount of retained material is dependent principally on the type and capacity of the filter used, the
nature of the species and the volume of gas passing through the filter.
1) The Whatman GMF150 filter is an example of a suitable product available commercially. This information is
given for the convenience of users of ISO 19701 and does not constitute an endorsement by ISO of this product.
6 © ISO 2013 – All rights reserved

4.7 Sampling using gas bags
Sampling with gas bags can be used for most analytical methods. The test atmosphere is pumped, or
allowed to flow under pressure, into a gas bag at a measured constant rate for a measured time period,
thus obtaining a known volume of sample in the bag. It is necessary to filter the fire effluents before
passing into the bag; simple in-line glass wool filters for particulates, and calcium chloride filters for
moisture, have been found effective. However, a calcium chloride absorbent removes water vapour and
water-soluble gases. At the end of the sampling period, the bag may be stored before it is connected to
the analyser; but it is important to appreciate that storage times in bags should be kept to a minimum,
preferably less than 1 h. Gases such as HF and HCl can dissolve in condensed/trapped water and this
reduces the concentration presented to the analyser.
Bags shall be gas-tight and inert and those with a lining of polyvinylfluoride (PVF) are recommended.
Table 1 summarizes the analytical methods and types of sample required for each method described in
this International Standard.
Table 1 — Type of sampling for the analytical methods described
Gas Analytical Method Type of sample for analysis
Carbon monoxide (CO) NDIR gas
Carbon dioxide (CO ) NDIR gas
Oxygen (O ) Paramagnetism gas
Hydrogen cyanide(HCN) Colourimetry (Chloramine T) solution
Colourimetry (picric acid) solution
HPIC solution
Hydrogen chloride (HCl) ISE solution
Hydrogen bromide (HBr) HPIC solution
titrimetry solution
Hydrogen fluoride (HF) ISE solution
HPIC solution
Online ISE solution
Nitrogen oxides (NO ) Chemiluminescence gas
x
Nitrogen dioxide (NO ) HPIC solution
Nitrogen monoxide (NO) Gfx-IR gas
Acrolein (2-propenal) Colourimetry solution
HPLC solution
GC-MS gas
Formaldehyde (Methanal) Colourimetry solution
HPLC solution
Acetaldehyde (Ethanal) HPLC solution
GC-MS solution
Total aldehydes Colourimetry solution
Sulfur dioxide (SO ) HPIC solution
Carbon disulphide (CS ) GC-MS, GC/FPD gas
Hydrogene Sulphide (H S) HPIC solution
GC/FPD solution
Ammonia (NH ) Colourimetry solution
HPIC solution
Titration solution
Antimony compounds AAS or ICP solution
Arsenic compounds AAS or ICP solution
Phosphorus ICP solution
Phosphates Colourimetry solution
HPIC solution
Table 1 (continued)
Gas Analytical Method Type of sample for analysis
Phenol HPLC solution
GC-MS gas
Benzene HPLC solution
GC-MS gas
Toluene (Methylbenzene) HPLC solution
GC-MS gas
Styrene (Phenylethene) HPLC solution
GC-MS gas
Acrylonitrile GC-MS solution
Formic acid HPIC solution
HPLC solution
Hydrocarbons (total) FID gas
5 Analytical methods for fire gases
5.1 Carbon monoxide by non-dispersive infrared spectroscopy (NDIR)
5.1.1 Application and limitations
The method provides a continuous analysis/monitoring capability for carbon monoxide. The analysers
are commonly self-contained instruments and include sample pumps, sample filtering, analysis
hardware and electronics. Direct readout of carbon monoxide concentration is usually provided (either
digital or analogue) together with an output for connecting recording devices. Instruments providing
carbon monoxide and carbon dioxide analyses in the same case are available.
5.1.2 Sensitivity and selectivity
Instruments are available for measuring carbon monoxide from below 1 µl/l to 50 000 µl/l (5 %) and
more with a common resolution of 0,1 % of the selected range. Interferences with nitrogen compounds,
water and carbon dioxide have been described.
5.1.3 Other considerations
Multi-range instruments are available to cover all concentrations likely to be encountered in fire
effluents, which will normally be over the range 500 µl/l to 50 000 µl/l. The method is non-destructive
and the sample can be “passed on” for analysis of other compounds, taking into account that some
components of the sample, e.g. particles, acid gases and water, can be lost in filtering and sampling.
5.1.4 Analysis principles
NDIR instruments operate by passing a beam of infrared (IR) radiation of a fixed wavelength through
the sample. The IR wavelength used is that which is in a main spectroscopic absorption region for carbon
monoxide (and which is not absorbed significantly by other species). The absorption of the radiation is
a measure of the concentration of carbon monoxide in the internal gas sample cell. Refinements may
include a “double beam” system that can compensate for interfering species and other effects.
5.1.5 Procedure
See Clause 4 for principles of sampling and C.2 for general principles of the method. However, for the
analysis of carbon monoxide by NDIR, the specific information in 5.1.6 to 5.1.10 is relevant.
8 © ISO 2013 – All rights reserved

Normally, the instruments have only to be powered and the sampling line attached. It is usually
convenient to set one concentration range within which the analysis is carried out and, therefore, it is
desirable that the recording system used (e.g. data logger) has sufficient resolution for the chosen range.
5.1.6 Sampling
It is essential that the sample stream entering the instrument be treated to remove particulates and
vapours condensable under ambient conditions. Simple in-line glass wool and calcium chloride filters
have been found to be effective. Sample flow rates on the order of a few litres per minute are common
and where the sampling point is many metres away from the instrument, a separately pumped, heated
sample line with a higher flow rate can be used with the instrument sample port “teed” into this.
5.1.7 Analysis
There is no requirement for additional analytical procedures.
5.1.8 Calibration
Calibration is achieved through the introduction of standard (preferably certificated) gas mixtures and
“zero gas” (which may be high-purity nitrogen) as provided commercially in pressurized cylinders. It is
desirable to calibrate the instrument by introducing the sample both at the inlet port and at the remote
sampling point. On multi-range instruments, it is usually possible to calibrate on the lowest range if more
than one range is to be routinely used. However, calibration within the range to be used for measurement
is recommended. It should be noted that the ambient concentration could vary significantly from these
values depending on location. It is, therefore, important to recognize that a significant ambient reading
can be obtained at the beginning of a fire experiment due to local conditions. The calibration and the
analysis of the fire effluents shall be carried out using the same flow-rate through the analyser.
5.1.9 Calculations
There are no calculations required; the carbon monoxide concentration is obtained by direct readout or
(more usually) through a connection to an electronic recording apparatus.
Note that some instruments have a nonlinear scale but have the electronic output corrected to provide
a linear signal. This linear signal ranges between fixed values and usually does not take account of the
selected concentration range.
5.1.10 Repeatability and reproducibility
Regarding the similarity of measurement technique, repeatability and reproducibility have been
estimated as equivalent to CO by NDIR (see 5.2.10).
[2]
For determination of CO yields according to AFAP-3 during combustion of PMMA at 800°C, Repeatability
[12]
has been estimated as 14 % and reproducibility as 26 %. These values include repeatability and
reproducibility of the fire model.
5.2 Carbon dioxide by non dispersive infrared spectroscopy (NDIR)
5.2.1 Application and limitations
NDIR provides a continuous analysis/monitoring capability for carbon dioxide. The analysers are
commonly self-contained instruments and include all sampling, pumping, sample filtering, and analysis
hardware and electronics. A direct readout of the carbon dioxide concentration is usually provided
(either digital or analog) together with an output for connecting recording device
...


NORME ISO
INTERNATIONALE 19701
Deuxième édition
2013-04-01
Méthodes d’échantillonnage et
d’analyse des effluents du feu
Methods for sampling and analysis of fire effluents
Numéro de référence
©
ISO 2013
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2013
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur
l’internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à
l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse
ii © ISO 2013 – Tous droits réservés

Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Méthodes d’échantillonnage . 1
4.1 Considérations générales . 1
4.2 Concentration et fraction volumique . 2
4.3 Considérations spéciales . 2
4.4 Échantillonnage en utilisant des solutions d’absorption de gaz . 4
4.5 Échantillonnage utilisant des tubes de sorption solides . 6
4.6 Prélèvement pour l’analyse spectrométrique ou spectrophotométrique . 7
4.7 Échantillonnage à l’aide de sacs à gaz . 7
5 Méthodes analytiques pour les gaz de combustion . 8
5.1 Monoxyde de carbone par spectroscopie infrarouge non dispersive (IRND) . 8
5.2 Dioxyde de carbone par spectroscopie infrarouge non dispersive (IRND) .10
5.3 Oxygène par paramagnétisme .12
5.4 Cyanure d’hydrogène .13
5.5 Chlorure d’hydrogène et bromure d’hydrogène .20
5.6 Fluorure d’hydrogène .27
5.7 Oxydes d’azote .32
5.8 Acroléine .38
5.9 Formaldéhyde .45
5.10 Acétaldéhyde .51
5.11 Aldéhydes totaux par colorimétrie .51
5.12 Dioxyde de soufre par chromatographie ionique à haute performance (CLI-HP) .53
5.13 Disulfure de carbone par CPG/SM en phase gazeuse .55
5.14 Sulfure d’hydrogène.57
5.15 Ammoniac .60
5.16 Composés antimoniques par spectrophotométrie d’absorption atomique (AAS) ou
spectrométrie d’émission plasma par couplage inductif (ICP) .64
5.17 Composés de l’arsenic par spectrophotométrie d’absorption atomique (AAS) ou
spectrométrie d’émission plasma par couplage inductif (ICP) .66
5.18 Phosphore par spectrométrie d’émission plasma par couplage inductif (ICP) .67
5.19 Phosphates .69
5.20 Phénol .73
5.21 Benzène .77
5.22 Toluène (Méthylbenzène) .80
5.23 Styrène (Phénylethène) .84
5.24 Acrylonitrile et autres nitriles par CPG/SM en phase gazeuse .88
5.25 Acide formique .90
5.26 Hydrocarbures totaux par FID .94
5.27 Isocyanates .94
5.28 Espèces organiques oxygénées .94
Annexe A (informative) Espèces et techniques de mesure actuellement considérées comme
inadaptées aux effluents du feu .95
Annexe B (informative) Tubes colorimétriques pour la détection de produits chimiques.97
Annexe C (informative) Méthodes quantitatives instrumentales .98
Annexe D (informative) Fluorure d’hydrogène par électrode sélective d’ions continue en ligne .112
Bibliographie .115
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (CEI) en ce qui concerne
la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives
ISO/CEI, Partie 2.
La tâche principale des comités techniques est d’élaborer les Normes internationales. Les projets de
Normes internationales adoptés par les comités techniques sont soumis aux comités membres pour vote.
Leur publication comme Normes internationales requiert l’approbation de 75 % au moins des comités
membres votants.
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable de
ne pas avoir identifié de tels droits de propriété et averti de leur existence.
L’ISO 19701 a été élaborée par le comité technique ISO/TC 92, Sécurité au feu, sous-comité SC 3, Dangers
pour les personnes et l’environnement dus au feu.
Cette deuxième édition annule et remplace la première édition (ISO 19701:2005).
iv © ISO 2013 – Tous droits réservés

Introduction
L’analyse des gaz de combustion utilisée dans l’évaluation des risques toxiques et de menace sur la vie,
ainsi que pour d’autres utilisations (par exemple l’impact sur l’environnement) est un grand défi pour
l’analyste. Les atmosphères de combustion sont par nature des environnements hostiles. Des températures
dépassant 1 000 °C sont courantes, la phase gazeuse peut contenir de nombreuses espèces corrosives,
toxiques, irritantes ou combustibles, ainsi que des quantités relativement élevées d’eau condensable.
Ces propriétés sont largement incompatibles avec la plupart des méthodes analytiques instrumentales,
où un échantillon propre est requis. Cela pose de nombreux problèmes pour la qualification et la
quantification des espèces et particules chimiques en atmosphères de combustion. Pour qu’un échantillon
présenté à l’instrument de mesure soit toléré, il peut être nécessaire de filtrer les particules et d’éliminer
d’autres espèces. Les pertes dans le système d’échantillonnage doivent donc être quantifiables et prises
en compte dans l’analyse finale.
Des techniques pour mesurer les espèces chimiques in situ existent également; cela fera l’objet d’un
futur document.
Les méthodes décrites dans l’Article 5 ont été employées avec succès par un certain nombre de
laboratoires. Des études de répétabilité et de reproductibilité de plusieurs méthodes couvertes dans la
[1] [2]
présente Norme internationale ont été décrites dans la norme NF X 70-100-1 et la norme AFAP-3.
Pour les méthodes qui impliquent l’utilisation d’un instrument commercial, l’incertitude sur les valeurs
mesurées peut être estimée à partir des données du fabricant et de toute autre information, par exemple
la répartition des pertes dans le procédé d’échantillonnage. Pour d’autres méthodes, l’incertitude sur
les valeurs mesurées peut se produire à cause de diverses raisons, telles que la sensibilité à la force des
réactifs ou la visibilité d’un point final en colorimétrie. Dans ces cas-là, il est supposé que des pratiques
d’excellence sont appliquées par le personnel qualifié.
Les gaz qui présentent un danger pour l’environnement, tels que les hydrocarbures aromatiques
polycycliques (HAP), les dioxines, les furanes et les perturbateurs du système endocrinien, seront traités
dans un futur document.
La présente Norme internationale est structurée de la façon suivante:
— l’Article 1 décrit le domaine d’application de la présente Norme internationale;
— l’Article 4 décrit les méthodes d’échantillonnage;
— l’Article 5 décrit les méthodes d’analyses des gaz dans l’atmosphère de combustion;
— l’Annexe A fournit des informations sur des techniques qui se sont révélées inadaptées aux
effluents du feu;
— l’Annexe B décrit brièvement l’utilisation de tubes colorimétriques à aspiration de composés chimiques;
— l’Annexe C est un sommaire des principales méthodes instrumentales disponibles pour l’analyse
de gaz d’incendie, étendant ainsi les informations fournies dans les différents articles, pour chaque
espèce chimique;
— l’Annexe D présente une méthode de mesure continue de la concentration en fluorure d’hydrogène
(HF) par électrode ionique sélective.
NORME INTERNATIONALE ISO 19701:2013(F)
Méthodes d’échantillonnage et d’analyse des effluents du feu
PRÉCAUTIONS DE SÉCURITÉ — L’attention doit être attirée sur le fait que les gaz de combustion
à analyser d’une part, et les nombreux réactifs utilisés pour leurs analyses d’autre part, peuvent
être toxiques et présenter des risques sanitaires sérieux. Il est donc admis que les modes
opératoires décrits dans ce document seront effectués par un personnel professionnel qualifié,
ayant en conséquence une formation adéquate en risques d’hygiène et de sécurité, associés à
de telles analyses, ainsi qu’en règles d’hygiène et de sécurité qui sont en vigueur. L’attention
doit également être portée à l’élimination sans danger et écologiquement acceptable de tous
les produits chimiques utilisés pour les analyses. Cela peut exiger un traitement poussé avant
l’élimination des déchets dans l’environnement. On admet de nouveau dans ce document que le
personnel responsable de l’élimination de tels réactifs en toute sécurité est adéquatement formé
dans ces techniques et est au courant des règlements d’hygiène et de sécurité en vigueur.
1 Domaine d’application
La présente Norme internationale présente un éventail de techniques d’échantillonnage et de méthodes
chimiques analytiques appropriées à l’analyse des différentes espèces chimiques en atmosphères de
combustion. Les modes opératoires concernent l’analyse d’échantillons extraits d’un appareil ou d’un
écoulement d’effluent à partir d’un appareil d’essai au feu ou d’un modèle physique d’essai au feu, mais il
ne rend pas compte de la nature spécifique de l’essai de combustion.
La présente Norme internationale ne couvre pas les aérosols (détaillés en Référence [3]) et la technique
de la spectroscopie infrarouge à transformée de Fourier (IRTF) (détaillée en Référence [4]).
2 Références normatives
Les documents ci-après, dans leur intégralité ou non, sont des références normatives indispensables
à l’application du présent document. Pour les références datées, seule l’édition citée s’applique. Pour
les références non datées, la dernière édition du document de référence (y compris les éventuels
amendements) s’applique.
ISO 13943, Sécurité au feu — Vocabulaire
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans l’ISO 13943 s’appliquent.
4 Méthodes d’échantillonnage
4.1 Considérations générales
L’échantillonnage est peut-être la partie la plus critique des modes opératoires, pour l’analyse des gaz dans
les effluents du feu. Alors que, dans d’autres domaines, l’échantillonnage et l’analyse sont couramment
utilisés pour de nombreuses espèces, l’échantillonnage dans les atmosphères de combustion présente
des problèmes peu communs et difficiles.
L’échantillon présenté à l’analyseur doit être aussi représentatif que possible de l’atmosphère d’essai,
sans modification provoquée par le système d’échantillonnage. Il convient que le mode opératoire
d’échantillonnage influence le moins possible l’atmosphère d’essai (par exemple par appauvrissement
du volume d’essai). Il convient que le mode opératoire d’échantillonnage soit aussi peu compliqué
que possible, tout en incorporant tous les dispositifs nécessaires détaillés dans la présente Norme
internationale. Le mode opératoire d’échantillonnage doit être capable de fonctionner avec un blocage
minimal des lignes d’échantillonnage, avec fusion ou autre perturbation des sondes minimale, et sans
permettre la condensation des espèces à analyser.
IMPORTANT — Il est important de comprendre que l’exactitude globale de l’analyse des espèces
issues des effluents du feu dépend en grande partie des modes opératoires d’échantillonnage
adoptés, en particulier la quantification des pertes dans les sondes, les lignes d’échantillonnage
et les systèmes de filtrage.
4.2 Concentration et fraction volumique
La concentration des effluents du feu ou d’un gaz toxique est le quotient de sa masse par le volume qui
−3
la contient. Pour les effluents du feu, elle est exprimée en grammes par mètre cube (g.m ). Cependant,
pour un gaz toxique, la concentration s’exprime généralement en fraction volumique à T = 298 K et P = 1
−1 3 3 −6
atm, et est exprimée en microlitres par litre (µL.L ) (équivalent à cm /m = 10 ).
NOTE 1 La concentration d’un gaz à la température T et à la pression P peut être calculée à partir de sa fraction
volumique (si le gaz peut être assimilé à un gaz parfait) en multipliant la fraction volumique par la masse volumique
du gaz dans les mêmes conditions de température et de pression.
NOTE 2 Les fractions volumiques des gaz toxiques utilisés doivent s’exprimer en « ppm par volume » mais
−1
« ppm » est un terme déconseillé et par conséquent « µL.L » est actuellement utilisé.
4.3 Considérations spéciales
Il existe de nombreux facteurs influençant directement le type spécifique de modes opératoires
d’échantillonnage choisi, afin de s’assurer qu’un échantillon adapté est fourni à l’analyseur. Par exemple,
les critères de sélection doivent inclure la plage des concentrations prévues, les limites de détection,
la réactivité des espèces présentant un intérêt, la présence d’interférences et les valeurs maximales et
moyennes de concentration. L’échantillonnage de l’atmosphère, extrêmement complexe et produite lors
de la combustion, exige une évaluation très complète de tous les facteurs potentiels qui affecteraient les
conditions optimales de collecte et d’analyse de l’échantillon.
Le grand nombre des différents produits fréquemment rencontrés dans les effluents du feu exige
souvent l’utilisation de plusieurs approches et de plusieurs méthodes d’échantillonnage, afin d’assurer
une identification et une quantification précises des produits de combustion. Le mode opératoire
d’échantillonnage choisi dépendra également des instruments et des méthodes analytiques disponibles
pour les espèces spécifiques à mesurer.
L’échantillonnage peut comporter l’analyse continue en ligne (par exemple infrarouge non dispersif) ou
non continue avec prélèvement en lots d’échantillons (par exemple échantillon dans un ballon sous vide
ou flacon laveur). L’échantillonnage en lots peut être encore subdivisé en deux catégories:
a) échantillonnage « instantané »;
b) échantillonnage « moyen » (ou intégré).
Bien qu’il n’y ait aucune distinction nette entre les catégories a) et b), on admet généralement que les
échantillonnages instantanés concernent les échantillons prélevés sur des périodes de temps courtes
(c’est-à-dire < 1 min en général), tandis que les échantillonnages intégrés sont en général prélevés sur
une période de temps plus longue (soit une partie significative de la période d’essai totale).
Dans certains cas, l’échantillonnage en ligne continu ou semi-continu ou l’échantillonnage instantané
peuvent être très bien adaptés pour suivre les changements rapides de l’environnement de combustion
et ils fourniront un suivi représentatif des concentrations. Cependant, il arrive souvent que les limites
minimales de détection des espèces chimiques présentant un intérêt exigent de plus grands volumes
d’échantillons que ceux obtenus en utilisant ces techniques. Si cette limitation analytique existe,
l’échantillonnage doit être fait sur une période de temps plus longue. Bien que l’utilisation de plus longues
périodes d’échantillonnage permette l’analyse à des concentrations inférieures, cette approche comporte
2 © ISO 2013 – Tous droits réservés

certaines limitations. Par exemple, ces types d’échantillonnage permettent uniquement la détermination
de la concentration moyenne intégrée, obtenue au cours de la période d’échantillonnage, mais ils ne
rendent pas compte des changements brusques de concentration des espèces présentant un intérêt.
Cependant, des changements brusques de concentration peuvent également être indétectables avec les
échantillons obtenus par prélèvement instantané, s’ils ne sont pas prélevés suffisamment fréquemment.
Quand les modes opératoires d’échantillonnage en lots sont employés, il est important de spécifier
la fréquence d’échantillonnage, l’heure d’échantillonnage de chaque échantillon et le temps total du
prélèvement. Ces informations sont essentielles afin d’assurer une bonne évaluation des données en
conjonction avec les autres propriétés du feu, qui peuvent être surveillées (par exemple le dégagement
de chaleur, les températures, la perte de masse, l’évolution de la fumée, la propagation des flammes).
Les essais au feu peuvent être classés comme « petit » (taille à l’échelle du laboratoire ou de la paillasse),
« intermédiaire » ou « grand » (en général, grandeur nature). Les gaz prélevés peuvent être soit chauds, soit
proches de la température ambiante. Les gaz doivent généralement être extraits à partir de l’atmosphère
d’essai au travers de tuyaux dédiés à cet effet, à l’aide d’une pompe à aspiration. Les tuyaux en acier
inoxydable, aussi courts que possible, sont souvent utilisés. Dans le cas de production de gaz chauds,
la ligne d’échantillonnage doit être chauffée à une température d’au moins 100 °C. Plusieurs méthodes
analytiques exigent un échantillon séché et débarrassé de toutes les particules. La laine de verre peut
être utilisée (dans la plupart des cas) comme filtre de particules, avec un autre piège constitué d’un agent
déshydratant (par exemple le sulfate de calcium ou le chlorure de calcium), afin d’éliminer l’humidité. Il
convient que les pièges soient situés juste avant l’analyseur et après toutes les sections de chauffage des
tubes d’échantillonnage. Les pièges à refroidissement simples sont souvent insuffisants pour éliminer
les quantités d’humidité présentes dans les effluents du feu; cependant, ils peuvent être utiles s’ils sont
placés en conjonction avec d’autres filtres et d’autres pièges. La technique d’échantillonnage ainsi que
le système analytique employés dicteront les exigences de débit et le besoin d’éliminer l’humidité. Il
convient que des précautions soient prises pour minimiser le volume des systèmes de filtrage, afin de
réduire le temps d’échantillonnage.
À l’exception du fluorure d’hydrogène (HF), les gaz acides doivent être prélevés en utilisant des tubes en
verre, des tubes revêtus d’époxy ou des tubes en PTFE, afin de minimiser les pertes dues à la réactivité
et à la condensation sur la surface des tubes. Pour le fluorure d’hydrogène, des tubes revêtus de PTFE
doivent être utilisés (les tubes en verre et revêtus de verre ne conviennent pas). Pour ces espèces qui
sont relativement réactives et qui sont sujettes aux pertes, les lignes d’échantillonnage doivent être
aussi courtes que possible et doivent être chauffées à une température suffisante pour éviter toute
condensation. Le chlorure d’hydrogène (HCl) et le bromure d’hydrogène (HBr) peuvent être adsorbés sur
des particules de suie aussi bien que sur les lignes d’échantillonnage de gaz (incluant les tubes en PTFE).
Pour les matériaux organiques (par exemple l’acroléine), les tuyaux en acier inoxydable sans revêtement
conviennent, mais les lignes d’échantillonnage doivent être chauffées afin d’éviter toute condensation.
Les pièges à particules, bien qu’habituellement nécessaires, peuvent être évités dans certains cas et il
convient de vérifier les exigences de l’instrument à cet égard.
La localisation et la taille des sondes d’échantillonnage sont régies par la taille de l’appareillage d’essai
et les exigences du système analytique. Cependant, le positionnement des sondes d’échantillonnage pour
les appareils spécifiques est au-delà du domaine d’application de la présente Norme internationale. En
général, la possibilité de stratification des gaz dans les chambres, sans mélange effectif, doit être prise
en compte et il convient d’éviter l’échantillonnage au voisinage des parois de la chambre d’essai.
L’étalonnage du système complet d’échantillonnage et d’analyse, plutôt que juste celui du système
d’analyse, est recommandé, afin de s’assurer que toutes les pertes sur le parcours de l’échantillon sont
prises en compte. Il convient que tous les étalonnages tiennent donc compte des facteurs tels que la
fuite du gaz (dans et hors des lignes d’échantillonnage) et l’adsorption des gaz sur les sondes, les lignes
d’échantillonnage, les filtres et les autres composants. Les gaz d’étalonnage sont souvent obtenus en
bouteilles. Cependant, il est recommandé de vérifier la concentration indiquée par le fournisseur par une
analyse indépendante. Cela est particulièrement vrai pour les gaz réactifs tels que HCl et HF, qui peuvent
se décomposer sur des périodes de temps relativement courtes, même dans une bouteille fermée. Le gaz
d’étalonnage doit être introduit au niveau de la sonde d’échantillonnage et doit parcourir le même trajet
que le gaz d’essai, à travers les filtres et les pièges, s’ils sont présents, jusqu’au système d’analyse ou au
milieu d’échantillonnage.
4.4 Échantillonnage en utilisant des solutions d’absorption de gaz
Les absorptions de gaz en solution par l’utilisation de bouteilles de lavage de gaz, de tubes de barbotage,
de flacons laveurs, etc., se basent toutes sur le même principe. L’atmosphère d’essai est aspirée ou poussée
à travers le milieu absorbant à une vitesse mesurée pendant une période de temps spécifiée. À la fin de la
période d’échantillonnage, la solution est analysée pour les espèces présentant un intérêt (par exemple
l’ion chlorure pour l’absorption d’acide chlorhydrique gazeux dans l’eau). En admettant une efficacité
de 100 % (voir la discussion ci-après), il est possible de calculer la concentration des espèces en phase
gazeuse, comme étant celle mesurée en solution. Une équation typique de calcul des concentrations est
donnée par l’Équation (1):
ÁV×× mm/
()
SG S
Á = (1)
G
q×t

ρ est la concentration en gaz;
G
ρ est la concentration de la solution;
S
V est le volume de la solution, exprimé en litres;
m /m est le rapport de la masse atomique ou de la masse moléculaire pour les espèces en phase
G S
gazeuse, G, et les espèces en phase liquide, S, si différentes, par exemple HCl/Cl);
q est le débit du courant de gaz traversant le flacon laveur, exprimé en litres par minute;
t est la durée du débit de gaz, exprimé en minutes.
La fraction volumique du gaz, X , peut être calculée en divisant la concentration par la masse volumique,
G
d, du gaz dans les conditions ambiantes de température et de pression. Si le gaz peut être assimilé à un
gaz parfait, la masse volumique peut être calculée, comme suit:
M
G
d = (2)
H
H
XÁ= (3)
GG
M
G

M est la masse molaire des espèces en phase gazeuse, g;
G
H est le volume de gaz occupé par 1 mole de gaz parfait dans les conditions ambiantes de tempé-
rature (T) et de pression (P) appropriées. [H = 8,314 J.K-1.mol-1 × 1 mol × T/P].
- −3
EXEMPLE Si la concentration en ion chlorure (Cl ) de la solution mesurée était de 0,006 g × dm dans une
solution de 0,025 dm , à une température thermodynamique de 293,15 K, sous une pression ambiante de 1 bar
5 5 −3 3
(10 Pa = 10 J × m ) et à un débit gazeux de 0,25 dm /min pendant 2 min; la concentration du gaz en chlorure
d’hydrogène est donnée par:
−3 3 3
ρ = [0,006 g.dm x 0,025 dm x (36,461 / 35,453)] / [0,25 dm /min x 2 min]
G
ρ = [0,00015 g x 1,028] / 0,50 dm
G
−3 −3
ρ = 0,0003084 g.dm = 308,4 mg.m
G
4 © ISO 2013 – Tous droits réservés

La fraction volumique du chlorure d’hydrogène est donnée par:
−3 −1 −1 −3 −1
X = 308,4 mg.m x (8,314 J.K .mol x 293,15 K / 105 J.m ) / 36,461 g.mol
G
−3 3 −1 −1
X = 308,4 mg.m x 0,02437 m .mol / 36,461 g.mol
G
X = 0,0002061 = 206,1 µL.L
G
Le volume de la solution de l’absorbeur et le débit total du gaz affectent directement le rapport des
concentrations en phase gazeuse et en phase liquide. Pour une concentration en gaz donnée, un plus petit
volume de solution et/ou un plus grand volume de gaz prélevé produiront des concentrations en solution
plus élevées. Le choix des conditions d’échantillonnage, incluant le volume et la vitesse d’échantillonnage
autorisés, la concentration en gaz dans l’atmosphère d’essai prévue, la nécessité d’un échantillonnage
fréquent, etc., sera dicté par les exigences de la technique analytique.
L’efficacité d’absorption d’un gaz dans le liquide est influencée par:
a) la solubilité du gaz dans la solution;
b) les caractéristiques physiques de l’absorbeur;
c) le rapport du débit d’écoulement du gaz au volume de solution.
Généralement, l’efficacité d’absorption est estimée empiriquement en permettant l’écoulement d’un gaz
présentant un intérêt, d’une concentration connue, à travers une série de flacons laveurs et en mesurant
la « fuite » au premier flacon laveur (c’est-à-dire ce qui est obtenu dans les autres pièges). Un autre
contrôle sur l’efficacité d’un système débit/flacon laveur donné est de mener une série d’expériences
avec une concentration connue en gaz, en utilisant différents flacons laveurs et différents débits
d’écoulement. Cependant, dans la pratique, le choix de l’appareil est limité, et les débits de gaz et les
volumes de solution de piégeage seront basés sur l’Équation (1), en tenant compte des caractéristiques
connues des méthodes d’analyse.
Il existe quatre types pour les solutions absorbeurs de gaz: les flacons laveurs simples (flacons laveurs
miniatures y compris), les absorbeurs en spirale ou hélicoïdaux, les colonnes à garnissage de perles de
verre et les tubes de flacons laveurs frittés. Les flacons de lavage, ou flacons laveurs, fonctionnent en
faisant passer le gaz à travers un tube (possédant en général un étranglement), qui est immergé dans le
liquide/la solution de piégeage. Ce type est le plus approprié pour les gaz fortement solubles, parce que
le temps de contact entre la solution et le gaz est court et la taille des bulles est relativement grande.
Pour les espèces moins solubles, les autres absorbeurs offrent un temps de contact plus long et/ou une
plus petite taille de bulles (ce qui augmente la surface relative de contact). Les absorbeurs en spirale, ou
hélicoïdaux, sont construits dans des formes spéciales afin de permettre un temps de contact plus long.
Le débit d’écoulement dans ces flacons laveurs est limité en raison de la possibilité de débordement des
solutions de piégeage à des débits élevés. Les colonnes à garnissage de perles de verre permettent une
augmentation du contact gaz/solution en dispersant les bulles à travers un lit de perles de verre. Les
débits peuvent être plus grands que pour les absorbeurs en spirale.
Les tubes de barbotage frittés contiennent un disque fritté ou sintérisé au niveau du tube d’entrée du gaz
afin de disperser le gaz en fines bulles (la taille des bulles dépend de la porosité du fritté). Il est nécessaire
d’observer des précautions en utilisant de tels flacons laveurs, de sorte que le phénomène d’écumage ne
se produise pas et de sorte que la coalescence des bulles fines ne contrarie pas l’effet du fritté. D’autre
part, il est également nécessaire de filtrer les atmosphères contenant des fumées (particules ou aérosols
liquides) avant de les prélever au travers du flacon laveur fritté, afin d’empêcher le colmatage du fritté (ce
qui peut se produire très facilement). Un tel colmatage peut également se produire avec l’accumulation
de dépôts de type cireux. Certaines espèces de gaz (par exemple HCl) peuvent être absorbées sur un
filtre, en particulier si des particules ont également été emprisonnées sur le filtre.
À noter que les gaz très solubles, tels que HCl et HF, peuvent entraîner un retour d’eau le long du tube
d’échantillonnage. Pour ces gaz, il est souvent nécessaire d’inclure un flacon laveur vide qui agira comme
un piège à liquide.
4.5 Échantillonnage utilisant des tubes de sorption solides
Les tubes de sorption solides constituent une méthode alternative aux absorbeurs de gaz par solution
pour l’échantillonnage de certains gaz des effluents du feu. Après l’échantillonnage, les espèces
présentant un intérêt sont désorbées dans l’eau et leur analyse peut alors être faite en utilisant une
méthode similaire à celle utilisée pour les absorbeurs en solution aqueuse.
Les avantages des tubes de sorption solides comparés aux absorbeurs en solution sont
a) la facilité de manipulation;
b) la compacité;
c) l’efficacité d’absorption élevée; et
d) la capacité d’être situé directement au point d’échantillonnage.
Ce dernier avantage peut avoir des conséquences dramatiques dans la mesure du HF, du HCl et du HBr
dans les effluents du feu, car ce sont des espèces qui sont facilement perdues sur les surfaces intérieures
des lignes d’échantillonnage. Avec les tubes de sorption solides (excepté dans des conditions de chaleur
extrême), il n’y a pas besoin de ligne d’échantillonnage en amont du tube de sorption lui-même. Tout
le matériel associé (par exemple les vannes, les débitmètres et les pompes) peut être situé en aval des
tubes, même à une grande distance du point d’échantillonnage. Cela assure que l’échantillon est aussi
représentatif de l’atmosphère du feu que possible.
Une grande expérience a été acquise avec l’utilisation des tubes de sorption solides, par exemple dans les
domaines du prélèvement atmosphérique et dans la surveillance de l’exposition du personnel sur son lieu
de travail. Des tubes similaires ont été reconsidérés pour leur utilisation potentielle dans le prélèvement
[5],[6]
d’échantillons des effluents du feu. Deux études ont été effectuées utilisant des sorbants solides
pour mesurer certains gaz dans des incendies de bâtiments réels. Ces tubes étaient placés dans des boîtes
d’échantillonnage portatives, portées par des pompiers, qui combattaient réellement l’incendie. Des tubes
de conception semblable, contenant du charbon actif, avaient été utilisés pour prélever des échantillons
[7] [8]
de HF et de HCN. Des tubes contenant des éclats d’hydroxyde de sodium pour l’absorption de gaz
[9]
acides ont été également décrits. Un mode opératoire pour les tubes d’échantillonnage en succession
en un endroit précis (par exemple toutes les 3 min ou 5 min), sans enlever ou remplacer les tubes, a été
[8]
décrit pour le prélèvement d’échantillons de gaz dans des incendies de taille réelle.
Le calcul de la concentration originale en gaz (par exemple HCl), à partir des espèces représentatives

récupérées dans la solution désorbante (par exemple Cl ), est le même que celui décrit pour les absorbants
en solution, sauf que le volume de solution est le volume de liquide désorbant. Dans la pratique, une
petite partie aliquote, au lieu de la solution entière, de la solution désorbante est souvent utilisée pour
l’analyse, ce facteur doit donc être pris en compte.
Les mêmes considérations qui s’appliquaient aux absorbeurs en solution, en ce qui concerne l’absorption
inefficace, la fuite et la relation entre volume prélevé et la concentration en gaz et en solution, s’appliquent
également à l’utilisation des sorbants solides. Au lieu de la taille des bulles, c’est la taille des particules de
l’absorbant qui est importante (les grandes particules offrent moins de superficie par unité de volume et
plus d’occasions de canalisation, des particules de plus petite taille peuvent causer l’obturation du tube
lors du prélèvement de gaz humides). Il convient que les tubes soient suffisamment petits (en général
100 mm de longueur et 6 mm de diamètre extérieur) de façon que deux tubes puissent être facilement
placés en série, afin de permettre la possibilité d’évaluer la fuite au niveau du premier tube.
Les tubes de sorption solides sont sujets à l’obturation due à la collecte de suie. Cela peut être déterminé
pendant l’échantillonnage par une diminution du débit d’échantillonnage. Il convient de maintenir le
même débit au cours de la durée du prélèvement à l’aide d’un dispositif de débit constant; autrement,
une erreur est introduite dans le calcul de la concentration en gaz. Un tampon en laine de verre, inséré
de manière lâche à l’entrée du tube, réduit la tendance à l’obturation due à la suie.
La désorption thermique de l’échantillon adsorbé est également possible, cela se fait en chauffant le tube
dans un jet de gaz inerte, chassant de ce fait l’échantillon, sans avoir besoin de l’étape en solution liquide.
6 © ISO 2013 – Tous droits réservés

4.6 Prélèvement pour l’analyse spectrométrique ou spectrophotométrique
L’utilisation d’analyse spectrométrique [spectrométrie de masse directe (SM)] et d’analyses
spectrophotométriques [non dispersive à infrarouge (IRND) et infrarouge à transformée de Fourier
(IRTF)] est devenue relativement répandue ces dernières années. En particulier, les techniques de IRTF
[9],[10],[11]
sont devenues proéminentes. La mesure continue au moyen des techniques d’analyse IRND
(par exemple pour le CO et le CO ) est maintenant si courante que plusieurs entreprises fabriquent des
instruments commerciaux conçus à cet effet.
Pour deux de ces méthodes (SM directe et IRTF), il est important que les effluents du feu soient dépourvus
de toutes les particules avant qu’ils soient introduits dans l’analyseur. Le filtre utilisé, qui est souvent
placé à la jonction de la ligne d’échantillonnage et de la chambre d’essai, doit être inerte, afin qu’il ne
réagisse avec aucun des gaz considérés. Une unité de filtrage en acier inoxydable contenant un filtre en
1)
fibres de verre (par exemple le microfiltre multigrade Whatman GMF150 , 1 µm, 47 mm de diamètre) a
été jugée comme étant appropriée. La ligne d’échantillon et le filtre (et pour le IRTF également la cellule
d’absorption) sont chauffés à une température supérieure à 120 °C (des températures comprises entre
120 °C et 150 °C ont été considérées comme étant appropriées), afin d’empêcher la formation d’eau
liquide, d’empêcher la dissolution des gaz solubles dans l’eau (par exemple le HCN et les gaz acides) et la
condensation d’autres gaz.
Quand un filtre est utilisé, il est nécessaire de vérifier à quel degré les espèces présentant un intérêt ont
été retenues par le filtre. Si la rétention s’est produite, il est nécessaire d’effectuer des corrections sur
les concentrations mesurées. La quantité de matériaux retenue dépend principalement du type et de la
capacité du filtre utilisé, de la nature des espèces chimiques et du volume de gaz passé à travers le filtre.
4.7 Échantillonnage à l’aide de sacs à gaz
L’échantillonnage avec des sacs à gaz peut être employé pour la plupart des méthodes analytiques.
L’atmosphère d’essai est pompée ou on la laisse s’écouler sous pression, dans un sac à gaz à un débit
constant mesuré, pendant une période de temps mesurée, obtenant ainsi un volume connu d’échantillon
dans le sac. Il est nécessaire de filtrer les effluents du feu avant de passer dans le sac; de simples filtres
de laine de verre pour particules et des pièges à humidité en chlorure de calcium, disposés en ligne,
se sont avérés efficaces. Cependant, un absorbant en chlorure de calcium enlèvera la vapeur d’eau et
les gaz solubles dans l’eau. À la fin de la période d’échantillonnage, le sac peut être stocké avant d’être
relié à l’analyseur, mais il est important de savoir qu’il convient de réduire le temps de stockage au
minimum, de préférence moins de 1 h. Les gaz tels que le HF et le HCl peuvent se dissoudre dans l’eau
condensée/emprisonnée et ce phénomène réduira donc la concentration présentée à l’analyseur.
Les sacs doivent être étanches et inertes aux gaz et ceux avec une doublure en fluorure de polyvinyle
(PVF) sont recommandés.
Le Tableau 1 récapitule les méthodes analytiques et les types d’échantillons exigés pour chaque méthode
décrite dans la présente Norme internationale.
Tableau 1 — Type d’échantillonnage pour les méthodes analytiques décrites
Gaz Méthode analytique Type d’échantillon pour l’analyse
Oxyde de carbone (CO) IRND gaz
Dioxyde de carbone (CO ) IRND gaz
Oxygène (O ) Paramagnétisme gaz
Acide cyanhydrique (HCN) Colorimétrie (chloramine T) solution
Colorimétrie (acide picrique) solution
CLI-HP solution
1) Le filtre Whatman GMF150 est un exemple de produit approprié disponible sur le marché. Cette information est
donnée à l’intention des utilisateurs de la présente Norme internationale et ne signifie nullement que l’ISO approuve
ou recommande l’emploi exclusif du produit ainsi désigné.
Tableau 1 (suite)
Gaz Méthode analytique Type d’échantillon pour l’analyse
Chlorure d’hydrogène (HCl) ISE solution
Bromure d’hydrogène (HBr) CLI-HP solution
Titrimétrie solution
Fluorure d’hydrogène (HF) ISE solution
CLI-HP solution
ISE en ligne solution
Oxyde d’azote (NO ) Chimiluminescence gaz
Dioxyde d’azote (NO ) CLI-HP solution
Monoxyde d’azote (NO) Gfx-IR gaz
acroléine (2-propénal) Colorimétrie solution
CLHP solution
CPG/SM gaz
Formaldéhyde (méthanal) Colorimétrie solution
CLHP solution
Acétaldéhyde (éthanal) CLHP solution
CPG/SM solution
Aldéhydes totaux Colorimétrie solution
Dioxyde de soufre (SO ) CLI-HP solution
Disulfure de carbone (CS ) CPG/SM, CPG/FPD gaz
Sulfure d’hydrogène (H S) CLI-HP solution
CPG/FPD solution
Ammoniac (NH ) Colorimétrie solution
CLI-HP solution
Titrage solution
Composés antimoniés AAS ou ICP solution
Composés d’arsenic AAS ou ICP solution
Phosphore ICP solution
Phosphates Colorimétrie solution
CLI-HP solution
Phénol CLHP solution
CPG/SM gaz
Benzène CLHP solution
CPG/SM gaz
Toluène (méthylbenzène) CLHP solution
CPG/SM gaz
Styrène (phénylethène) CLHP solution
CPG/SM gaz
Acrylonitrile CPG/SM so
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.