Particle size analysis — Laser diffraction methods — Part 1: General principles

Analyse granulométrique — Méthodes par diffraction laser — Partie 1: Principes généraux

La présente partie de l'ISO 13320 fournit des directives sur le mesurage des distributions granulométriques effectué dans tout système bi-phase, par exemple poudres, pulvérisateurs, aérosols, matières en suspension, émulsions, bulles de gaz dans des liquides, par l'analyse de leurs motifs de diffusion de la lumière angulaire. Elle ne traite pas des prescriptions spécifiques relatives au mesurage granulométrique de produits particuliers. La présente partie de l'ISO 13320 s'applique aux particules dont la taille est comprise dans une plage approximative de 0,1 µm à 3 mm.Pour les particules non sphériques, le modèle optique de cette technique suppose que les particules sont sphériques; on obtient ainsi une distribution granulométrique équivalente à celle des particules sphériques. La distribution granulométrique obtenue peut être différente de celles obtenues avec les méthodes fondées sur d'autres principes physiques (par exemple sédimentation, tamisage).

Sejalna analiza - Metoda z lasersko difrakcijo - 1. del: Splošna načela

General Information

Status
Withdrawn
Publication Date
10-Nov-1999
Withdrawal Date
10-Nov-1999
Current Stage
9599 - Withdrawal of International Standard
Start Date
18-Sep-2009
Completion Date
19-Apr-2025

Relations

Standard
ISO 13320-1:1999 - Particle size analysis -- Laser diffraction methods
English language
34 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 13320-1:2002
English language
34 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 13320-1:1999 - Analyse granulométrique -- Méthodes par diffraction laser
French language
36 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


INTERNATIONAL ISO
STANDARD 13320-1
First edition
1999-11-01
Particle size analysis — Laser diffraction
methods —
Part 1:
General principles
Analyse granulométrique — Méthodes par diffraction laser —
Partie 1: Principes généraux
A
Reference number
Contents
1 Scope .1
2 Normative reference .1
3 Terms, definitions and symbols.1
3.1 Terms and definitions .1
3.2 Symbols.3
4 Principle.4
5 Laser diffraction instrument .4
6 Operational procedures .6
6.1 Requirements.6
6.2 Sample inspection, preparation, dispersion and concentration.7
6.3 Measurement.9
6.4 Repeatability.11
6.5 Accuracy.11
6.6 Error sources; diagnosis .12
6.7 Resolution; sensitivity .14
7 Reporting of results.14
Annex A (informative) Theoretical background of laser diffraction.16
Annex B (informative) Recommendations for instrument specifications .25
Annex C (informative) Dispersion liquids for the laser diffraction method.28
Annex D (informative) Refractive index for various liquids and solids .29
Bibliography.34
©  ISO 1999
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from the publisher.
International Organization for Standardization
Case postale 56 • CH-1211 Genève 20 • Switzerland
Internet iso@iso.ch
Printed in Switzerland
ii
© ISO
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
Draft International Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.
International Standard ISO 13320-1 was prepared by Technical Committee ISO/TC 24, Sieves, sieving and other
sizing methods, Subcommittee SC 4, Sizing by methods other than sieving.
ISO 13320 consists of the following parts, under the general title Particle size analysis — Laser diffraction methods:
 Part 1: General principles
 Part 2: Validation of inversion procedures
Annexes A to E of this part of ISO 13320 are for information only.
iii
© ISO
Introduction
Laser diffraction methods are nowadays widely used for particle sizing in many different applications. The success
of the technique is based on the fact that it can be applied to various kinds of particulate systems, is fast and can be
automated and that a variety of commercial instruments is available. Nevertheless, the proper use of the instrument
and the interpretation of the results require the necessary caution.
Therefore, there is a need for establishing an International Standard for particle size analysis by laser diffraction
methods. Its purpose is to provide a methodology for adequate quality control in particle size analysis.
Historically, the laser diffraction technique started by taking only scattering at small angles into consideration and,
thus, has been known by the following names:
 Fraunhofer diffraction;
 (near-) forward light scattering;
 low-angle laser light scattering (LALLS).
However, the technique has been broadened to include light scattering in a wider angular range and application of
the Mie theory in addition to approximating theories such as Fraunhofer and anomalous diffraction.
The laser diffraction technique is based on the phenomenon that particles scatter light in all directions with an
intensity pattern that is dependent on particle size. All present instruments assume a spherical shape for the
particles. Figure 1 illustrates the characteristics of single particle scattering patterns: alternation of high and low
intensities, with patterns that extend for smaller particles to wider angles than for larger particles [2-7, 10, 15 in the
bibliography].
Within certain limits the scattering pattern of an ensemble of particles is identical to the sum of the individual
scattering patterns of all particles present. By using an optical model to compute scattering patterns for unit volumes
of particles in selected size classes and a mathematical deconvolution procedure, a volumetric particle size
distribution is calculated, the scattering pattern of which fits best with the measured pattern (see also annex A).
a) b)
Figure 1 — Scattering pattern for two spherical particles: the particle generating pattern a) is twice as large
as the one generating pattern b)
A typical laser diffraction instrument consists of a light beam (usually a laser), a particulate dispersing device, a
detector for measuring the scattering pattern and a computer for both control of the instrument and calculation of the
particle size distribution. Note that the laser diffraction technique cannot distinguish between scattering by single
particles and scattering by clusters of primary particles forming an agglomerate or an aggregate. Usually, the
resulting particle size for agglomerates is related to the cluster size, but sometimes the size of the primary particles
is reflected in the particle size distribution as well. As most particulate samples contain agglomerates or aggregates
iv
© ISO
and one is generally interested in the size distribution of the primary particles, the clusters are usually dispersed into
primary particles before measurement.
Historically, instruments only used scattering angles smaller than 14°, which limited the application to a lower size of
about 1 mm. The reason for this limitation is that smaller particles show most of their distinctive scattering at larger
angles (see also annex A). Many recent instruments allow measurement at larger scattering angles, some up to
about 150°, for example through application of a converging beam, more or larger lenses, a second laser beam or
more detectors. Thus, smaller particles down to about 0,1 mm can be sized. Some instruments incorporate
additional information from scattering intensities and intensity differences at various wavelengths and polarization
planes in order to improve the characterization of particle sizes in the submicrometre range.
v
INTERNATIONAL STANDARD  © ISO ISO 13320-1:1999(E)
Particle size analysis — Laser diffraction methods —
Part 1:
General principles
1 Scope
This part of ISO 13320 provides guidance on the measurement of size distributions of particles in any two-phase
system, for example powders, sprays, aerosols, suspensions, emulsions and gas bubbles in liquids, through
analysis of their angular light scattering patterns. It does not address the specific requirements of particle size
measurement of specific products. This part of ISO 13320 is applicable to particle sizes ranging from approximately
0,1 mm to 3 mm.
For non-spherical particles, an equivalent-sphere size distribution is obtained because the technique uses the
assumption of spherical particles in its optical model. The resulting particle size distribution may be different from
those obtained by methods based on other physical principles (e.g. sedimentation, sieving).
2 Normative reference
The following normative document contains provisions which, through reference in this text, constitute provisions of
this part of ISO 13320. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this part of ISO 13320 are encouraged to investigate the
possibility of applying the most recent edition of the normative document indicated below. For undated references,
the lates edition of the normative document referred to applies. Members of ISO and IEC maintain registers of
currently valid International Standards.
ISO 9276-1:1990, Representation of results of particle size analysis — Part 1: Graphical representation.
3 Terms, definitions and symbols
For the purposes of this part of ISO 13320, the following terms, definitions and symbols apply.
3.1 Terms and definitions
3.1.1
absorption
reduction of intensity of a light beam traversing a medium through energy conversion in the medium
3.1.2
coefficient of variation
relative measure (%) for precision: standard deviation divided by mean value of population and multiplied by 100
(for normal distributions of data the median is equal to the mean)
© ISO
3.1.3
complex refractive index
N
p
refractive index of a particle, consisting of a real and an imaginary (absorption) part
N = n - ik
p p p
3.1.4
relative refractive index
m
complex refractive index of a particle, relative to that of the medium
m = N /n
p m
3.1.5
deconvolution
mathematical procedure whereby the size distribution of a particle ensemble is inferred from measurements of their
scattering pattern
3.1.6
diffraction
spreading of light around the contour of a particle beyond the limits of its geometrical shadow with a small deviation
from rectilinear propagation
3.1.7
extinction
attenuation of a light beam traversing a medium through absorption and scattering
3.1.8
model matrix
matrix containing light scattering vectors for unit volumes of different size classes, scaled to the detector’s
geometry, as derived from model computation
3.1.9
multiple scattering
subsequent scattering of light at more than one particle, causing a scattering pattern that is no longer the sum of the
patterns from all individual particles (in contrast to single scattering)
3.1.10
obscuration
optical concentration
percentage or fraction of incident light that is attenuated due to extinction (scattering and/or absorption) by the
particles
3.1.11
optical model
theoretical model used for computing the model matrix for optically homogeneous spheres with, if necessary, a
specified complex refractive index, e.g. Fraunhofer diffraction, anomalous diffraction, Mie scattering
3.1.12
reflection
return of radiation by a surface, without change in wavelength
3.1.13
refraction
change of the direction of propagation of light determined by change in the velocity of propagation in passing from
one medium to another; in accordance with Snell’s law
n sin Q = n sin Q
m m p p
© ISO
3.1.14
scattering
general term describing the change in propagation of light at the interface of two media
3.1.15
scattering pattern
angular or spatial pattern of light intensities [I(q) and I(r) respectively] originating from scattering, or the related
energy values taking into account the sensitivity and the geometry of the detector elements
3.1.16
single scattering
scattering whereby the contribution of a single member of a particle population to the scattering pattern of the entire
population is independent of the other members of the population
3.1.17
width of normal size distribution
standard deviation (absolute value) or coefficient of variation (relative percentage) of the size distribution
NOTE For normal distributions about 95 % of the population falls within ± 2 standard deviations from the mean value and
about 99,7 % within ± 3 standard deviations from the mean value.
3.2 Symbols
c volumetric particulate concentration, %
f focal length of lens, mm
I(q) angular intensity distribution of light scattered by particles (scattering pattern)
I(r) spatial intensity distribution of light scattered by particles on the detector elements (m
...


SLOVENSKI STANDARD
01-januar-2002
6HMDOQDDQDOL]D0HWRGD]ODVHUVNRGLIUDNFLMRGHO6SORãQDQDþHOD
Particle size analysis -- Laser diffraction methods -- Part 1: General principles
Analyse granulométrique -- Méthodes par diffraction laser -- Partie 1: Principes généraux
Ta slovenski standard je istoveten z: ISO 13320-1:1999
ICS:
19.120 Analiza velikosti delcev. Particle size analysis. Sieving
Sejanje
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 13320-1
First edition
1999-11-01
Particle size analysis — Laser diffraction
methods —
Part 1:
General principles
Analyse granulométrique — Méthodes par diffraction laser —
Partie 1: Principes généraux
A
Reference number
Contents
1 Scope .1
2 Normative reference .1
3 Terms, definitions and symbols.1
3.1 Terms and definitions .1
3.2 Symbols.3
4 Principle.4
5 Laser diffraction instrument .4
6 Operational procedures .6
6.1 Requirements.6
6.2 Sample inspection, preparation, dispersion and concentration.7
6.3 Measurement.9
6.4 Repeatability.11
6.5 Accuracy.11
6.6 Error sources; diagnosis .12
6.7 Resolution; sensitivity .14
7 Reporting of results.14
Annex A (informative) Theoretical background of laser diffraction.16
Annex B (informative) Recommendations for instrument specifications .25
Annex C (informative) Dispersion liquids for the laser diffraction method.28
Annex D (informative) Refractive index for various liquids and solids .29
Bibliography.34
©  ISO 1999
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from the publisher.
International Organization for Standardization
Case postale 56 • CH-1211 Genève 20 • Switzerland
Internet iso@iso.ch
Printed in Switzerland
ii
© ISO
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
Draft International Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.
International Standard ISO 13320-1 was prepared by Technical Committee ISO/TC 24, Sieves, sieving and other
sizing methods, Subcommittee SC 4, Sizing by methods other than sieving.
ISO 13320 consists of the following parts, under the general title Particle size analysis — Laser diffraction methods:
 Part 1: General principles
 Part 2: Validation of inversion procedures
Annexes A to E of this part of ISO 13320 are for information only.
iii
© ISO
Introduction
Laser diffraction methods are nowadays widely used for particle sizing in many different applications. The success
of the technique is based on the fact that it can be applied to various kinds of particulate systems, is fast and can be
automated and that a variety of commercial instruments is available. Nevertheless, the proper use of the instrument
and the interpretation of the results require the necessary caution.
Therefore, there is a need for establishing an International Standard for particle size analysis by laser diffraction
methods. Its purpose is to provide a methodology for adequate quality control in particle size analysis.
Historically, the laser diffraction technique started by taking only scattering at small angles into consideration and,
thus, has been known by the following names:
 Fraunhofer diffraction;
 (near-) forward light scattering;
 low-angle laser light scattering (LALLS).
However, the technique has been broadened to include light scattering in a wider angular range and application of
the Mie theory in addition to approximating theories such as Fraunhofer and anomalous diffraction.
The laser diffraction technique is based on the phenomenon that particles scatter light in all directions with an
intensity pattern that is dependent on particle size. All present instruments assume a spherical shape for the
particles. Figure 1 illustrates the characteristics of single particle scattering patterns: alternation of high and low
intensities, with patterns that extend for smaller particles to wider angles than for larger particles [2-7, 10, 15 in the
bibliography].
Within certain limits the scattering pattern of an ensemble of particles is identical to the sum of the individual
scattering patterns of all particles present. By using an optical model to compute scattering patterns for unit volumes
of particles in selected size classes and a mathematical deconvolution procedure, a volumetric particle size
distribution is calculated, the scattering pattern of which fits best with the measured pattern (see also annex A).
a) b)
Figure 1 — Scattering pattern for two spherical particles: the particle generating pattern a) is twice as large
as the one generating pattern b)
A typical laser diffraction instrument consists of a light beam (usually a laser), a particulate dispersing device, a
detector for measuring the scattering pattern and a computer for both control of the instrument and calculation of the
particle size distribution. Note that the laser diffraction technique cannot distinguish between scattering by single
particles and scattering by clusters of primary particles forming an agglomerate or an aggregate. Usually, the
resulting particle size for agglomerates is related to the cluster size, but sometimes the size of the primary particles
is reflected in the particle size distribution as well. As most particulate samples contain agglomerates or aggregates
iv
© ISO
and one is generally interested in the size distribution of the primary particles, the clusters are usually dispersed into
primary particles before measurement.
Historically, instruments only used scattering angles smaller than 14°, which limited the application to a lower size of
about 1 mm. The reason for this limitation is that smaller particles show most of their distinctive scattering at larger
angles (see also annex A). Many recent instruments allow measurement at larger scattering angles, some up to
about 150°, for example through application of a converging beam, more or larger lenses, a second laser beam or
more detectors. Thus, smaller particles down to about 0,1 mm can be sized. Some instruments incorporate
additional information from scattering intensities and intensity differences at various wavelengths and polarization
planes in order to improve the characterization of particle sizes in the submicrometre range.
v
INTERNATIONAL STANDARD  © ISO ISO 13320-1:1999(E)
Particle size analysis — Laser diffraction methods —
Part 1:
General principles
1 Scope
This part of ISO 13320 provides guidance on the measurement of size distributions of particles in any two-phase
system, for example powders, sprays, aerosols, suspensions, emulsions and gas bubbles in liquids, through
analysis of their angular light scattering patterns. It does not address the specific requirements of particle size
measurement of specific products. This part of ISO 13320 is applicable to particle sizes ranging from approximately
0,1 mm to 3 mm.
For non-spherical particles, an equivalent-sphere size distribution is obtained because the technique uses the
assumption of spherical particles in its optical model. The resulting particle size distribution may be different from
those obtained by methods based on other physical principles (e.g. sedimentation, sieving).
2 Normative reference
The following normative document contains provisions which, through reference in this text, constitute provisions of
this part of ISO 13320. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this part of ISO 13320 are encouraged to investigate the
possibility of applying the most recent edition of the normative document indicated below. For undated references,
the lates edition of the normative document referred to applies. Members of ISO and IEC maintain registers of
currently valid International Standards.
ISO 9276-1:1990, Representation of results of particle size analysis — Part 1: Graphical representation.
3 Terms, definitions and symbols
For the purposes of this part of ISO 13320, the following terms, definitions and symbols apply.
3.1 Terms and definitions
3.1.1
absorption
reduction of intensity of a light beam traversing a medium through energy conversion in the medium
3.1.2
coefficient of variation
relative measure (%) for precision: standard deviation divided by mean value of population and multiplied by 100
(for normal distributions of data the median is equal to the mean)
© ISO
3.1.3
complex refractive index
N
p
refractive index of a particle, consisting of a real and an imaginary (absorption) part
N = n - ik
p p p
3.1.4
relative refractive index
m
complex refractive index of a particle, relative to that of the medium
m = N /n
p m
3.1.5
deconvolution
mathematical procedure whereby the size distribution of a particle ensemble is inferred from measurements of their
scattering pattern
3.1.6
diffraction
spreading of light around the contour of a particle beyond the limits of its geometrical shadow with a small deviation
from rectilinear propagation
3.1.7
extinction
attenuation of a light beam traversing a medium through absorption and scattering
3.1.8
model matrix
matrix containing light scattering vectors for unit volumes of different size classes, scaled to the detector’s
geometry, as derived from model computation
3.1.9
multiple scattering
subsequent scattering of light at more than one particle, causing a scattering pattern that is no longer the sum of the
patterns from all individual particles (in contrast to single scattering)
3.1.10
obscuration
optical concentration
percentage or fraction of incident light that is attenuated due to extinction (scattering and/or absorption) by the
particles
3.1.11
optical model
theoretical model used for computing the model matrix for optically homogeneous spheres with, if necessary, a
specified complex refractive index, e.g. Fraunhofer diffraction, anomalous diffraction, Mie scattering
3.1.12
reflection
return of radiation by a surface, without change in wavelength
3.1.13
refraction
change of the direction of propagation of light determined by change in the velocity of propagation in passing from
one medium to another; in accordance with Snell’s law
n sin Q = n sin Q
m m p p
© ISO
3.1.14
scattering
general term describing the change in propagation of light at the interface of two media
3.1.15
scattering pattern
angular or spatial pattern of light intensitie
...


NORME ISO
INTERNATIONALE 13320-1
Première édition
1999-11-01
Analyse granulométrique — Méthodes par
diffraction laser —
Partie 1:
Principes généraux
Particle size analysis — Laser diffraction methods —
Part 1: General principles
A
Numéro de référence
Sommaire
1 Domaine d’application .1
2 Référence normative .1
3 Termes, définitions et symboles .1
3.1 Termes et définitions.1
3.2 Symboles.3
4 Principe.4
5 Instrument de diffraction laser .4
6 Modes opératoires de fonctionnement.6
6.1 Prescriptions.7
6.2 Contrôle, préparation, dispersion et concentration de l'échantillon.7
6.3 Mesurage .10
6.4 Répétabilité.12
6.5 Exactitude.12
6.6 Sources d'erreurs; diagnostics .13
6.7 Résolution; sensibilité .15
7 Rapport des résultats.15
Annexe A (informative) Arrière-plan théorique de la diffraction laser .17
Annexe B (informative) Recommandations pour les spécifications des instruments.27
Annexe C (informative) Liquides de dispersion utilisés pour la méthode de diffraction laser .30
Annexe D (informative) Indice de réfraction de divers liquides et solides.31
Bibliographie.36
©  ISO 1999
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque
forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.
Organisation internationale de normalisation
Case postale 56 • CH-1211 Genève 20 • Suisse
Internet iso@iso.ch
Imprimé en Suisse
ii
© ISO
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux
comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité
technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en
liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission
électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI, Partie 3.
Les projets de Normes internationales adoptés par les comités techniques sont soumis aux comités membres pour
vote. Leur publication comme Normes internationales requiert l'approbation de 75 % au moins des comités
membres votants.
La Norme internationale ISO 13320 a été élaborée par le comité technique ISO /TC 24, Tamis, tamisage, et autres
méthodes de séparation granulométrique, sous-comité SC 4, Granulométrie par procédés autres que tamisage.
L'ISO 13320 comprend les parties suivantes, présentées sous le titre général Analyse granulométrique —
Méthodes par diffraction laser:
 Partie 1: Principes généraux
 Partie 2: Validation de procédures d'inversion
Les annexes A à D de la présente partie de l'ISO 13320 sont données uniquement à titre d'information.
iii
© ISO
Introduction
Aujourd'hui, les méthodes par diffraction laser sont largement utilisées pour différentes applications granulo-
métriques. Le succès de cette technique est fondé sur le fait qu'elle peut être appliquée à de nombreux types de
systèmes particulaires, qu'elle est rapide et peut être automatisée, et qu'en outre, de nombreux instruments sont
commercialisés. Néanmoins, il convient de prendre toutes les précautions nécessaires lors de l'utilisation de
l'instrument et de l'interprétation des résultats.
Il y a donc lieu d'établir une Norme internationale sur l'analyse granulométrique par des méthodes de diffraction
laser. L'objectif de cette norme est de fournir une méthodologie relative au contrôle qualité des analyses
granulométriques.
À l'origine, la technique de diffraction laser consistait à ne prendre en considération que la diffusion de la lumière à
petits angles. Cette technique a ainsi pris les noms suivants:
 la diffraction de Fraunhofer;
 la diffusion de la lumière vers l'avant;
 la diffusion de la lumière laser à angle plat.
Toutefois, la technique s'est beaucoup développée en intégrant maintenant la diffusion de la lumière à des angles
plus grands, ainsi que l'application de la théorie de Mie, qui vient s'ajouter aux théories plus approximatives telles
que la diffraction de Fraunhofer ou la diffraction anormale.
La technique de diffraction laser est fondée sur le phénomène selon lequel les particules diffusent de la lumière
dans toutes les directions, le type d'intensité dépendant de la dimension des particules. Tous les instruments
actuellement disponibles partent du principe que les particules sont sphériques. La Figure 1 illustre les
caractéristiques des motifs de diffusion d'une particule unique: alternance d'intensités faibles et élevées, les
particules plus petites s'étendant selon des angles plus grands que les particules plus grandes [2-7, 10, 15 dans la
Bibliographie].
Dans certaines limites, le motif de diffusion d'un ensemble de particules est identique à la somme des motifs de
diffusion de toutes les particules présentes. On calcule la distribution granulométrique volumétrique en utilisant un
modèle optique pour calculer les motifs de diffusion pour les volumes d'unité de particules de catégories de tailles
sélectionnées et une procédure de déconvolution mathématique; le motif de diffusion de cette distribution est le plus
proche du modèle mesuré (voir aussi l'annexe A).
a) b)
Figure 1 — Motif de diffusion de deux particules sphériques: la particule qui génère le modèle (a) est deux
fois plus grande que celle qui génère le modèle (b)
Un instrument de diffraction laser type est constitué de différents éléments: un faisceau lumineux (généralement un
laser), un dispositif de dispersion particulaire, un détecteur permettant de mesurer le motif de diffusion et un
ordinateur pour, d'une part, commander l'instrument, et d'autre part calculer la distribution granulométrique. À noter
iv
© ISO
que la technique de diffraction laser ne distingue pas la diffusion par particules uniques et la diffusion par groupes
de particules primaires formant un agglomérat ou un agrégat. Généralement, le résultat de la taille des particules
d'un agglomérat correspond à la taille des particules regroupées, mais dans certains cas, la distribution
granulométrique indique également la taille des particules primaires. Étant donné que la plupart des échantillons
contiennent des agglomérats ou des agrégats et que l'étude concerne généralement la distribution granulométrique
des particules primaires, les groupes sont généralement répartis en particules primaires avant d'être mesurés.
À l'origine, les instruments prenaient uniquement en compte les angles de diffusion inférieurs à 14°, ce qui limitait
l'application à des particules supérieures à environ 1 mm, les particules plus petites développant la plus grande
partie de leur diffusion distinctive à des angles plus grands (voir aussi l'annexe A). Les instruments plus récents
permettent, pour beaucoup, d'effectuer des mesurages à des angles de diffusion plus grands, certains allant jusqu'à
des angles d'environ 150°; c'est le cas notamment lors de l'utilisation d'un faisceau convergent, d'un plus grand
nombre d'objectifs ou d'objectifs plus grands, d'un second faisceau laser ou d'un plus grand nombre de détecteurs.
Ainsi, les particules plus petites (pouvant descendre jusqu'à environ 0,1 mm) peuvent être mesurées. Certains
instruments contiennent des informations supplémentaires données par les intensités de diffusion et les différences
d'intensité à différentes longueurs d'onde et différents plans de polarisation, afin d'améliorer la caractérisation
granulométrique des particules dans la plage sous-micrométrique.
v
NORME INTERNATIONALE  © ISO ISO 13320-1:1999(F)
Analyse granulométrique — Méthodes par diffraction laser —
Partie 1:
Principes généraux
1 Domaine d’application
La présente partie de l'ISO 13320 fournit des directives sur le mesurage des distributions granulométriques effectué
dans tout système bi-phase, par exemple poudres, pulvérisateurs, aérosols, matières en suspension, émulsions,
bulles de gaz dans des liquides, par l'analyse de leurs motifs de diffusion de la lumière angulaire. Elle ne traite pas
des prescriptions spécifiques relatives au mesurage granulométrique de produits particuliers. La présente partie de
l'ISO 13320 s'applique aux particules dont la taille est comprise dans une plage approximative de 0,1 mm à 3 mm.
Pour les particules non sphériques, le modèle optique de cette technique suppose que les particules sont
sphériques; on obtient ainsi une distribution granulométrique équivalente à celle des particules sphériques. La
distribution granulométrique obtenue peut être différente de celles obtenues avec les méthodes fondées sur
d’autres principes physiques (par exemple sédimentation, tamisage).
2 Référence normative
Le document normatif suivant contient des dispositions qui, par suite de la référence qui y est faite, constituent des
dispositions valables pour la présente partie de l’ISO 13320. Pour les références datées, les amendements
ultérieurs ou les révisions de ces publications ne s’appliquent pas. Toutefois, les parties prenantes aux accords
fondés sur la présente partie de l’ISO 13320 sont invitées à rechercher la possibilité d'appliquer l'édition la plus
récente du document normatif indiqué ci-après. Pour les références non datées, la dernière édition du document
normatif en référence s’applique. Les membres de l'ISO et de la CEI possèdent le registre des Normes
internationales en vigueur.
ISO 9276-1:1990, Représentation de données obtenues par analyse granulométrique — Partie 1: Représentation
graphique.
3 Termes, définitions et symboles
Pour les besoins de la présente partie de l'ISO 13320, les termes, définitions et symboles suivants s'appliquent.
3.1 Termes et définitions
3.1.1
absorption
diminution de l'intensité d'un faisceau lumineux traversant un milieu par conversion de l'énergie dans le milieu
3.1.2
coefficient de variation
mesure relative (%) de la précision: écart-type divisé par la valeur moyenne de la population et multiplié par 100
(pour les distributions normales de données, la médiane est égale à la moyenne)
© ISO
3.1.3
indice de réfraction complexe
N
p
indice de réfraction d'une particule, constitué d'une partie réelle et d'une partie imaginaire (absorption):
N = n - ik
p p p
3.1.4
indice de réfraction relatif
m
indice de réfraction complexe d’une particule, rapporté à celui du milieu:
m = N /n
p m
3.1.5
déconvolution
procédure mathématique selon laquelle la distribution granulométrique d'un ensemble de particules est déduite des
mesurages du motif de diffusion
3.1.6
diffraction
étalement de la lumière sur les contours d'une particule, en deçà de son ombre géométrique, avec un faible écart
par rapport à la propagation rectiligne
3.1.7
extinction
atténuation du faisceau lumineux traversant un milieu par absorption et diffusion
3.1.8
matrice de motif
matrice contenant les vecteurs de diffusion de lumière pour des volumes d'unité de différentes classes de tailles,
mis à l'échelle par rapport à la géométrie du détecteur, telle qu'elle est dérivée du calcul du motif
3.1.9
diffusion multiple
diffusion ultérieure de la lumière sur plusieurs particules, entraînant la formation d'un motif de diffusion qui ne
correspond plus à la somme des motifs de toutes les particules individuelles (par opposition à la diffusion unique)
3.1.10
obscurcissement
concentration optique
pourcentage ou fraction de la lumière incidente atténuée en raison de l'extinction (diffusion et/ou absorption) par les
particules
3.1.11
modèle optique
modèle théorique utilisé pour calculer la matrice du modèle pour des sphères optiquement homogènes avec, si
nécessaire, un indice de réfraction complexe spécifié: par exemple la diffraction de Fraunhofer, la diffraction
anormale, la diffusion de Mie
3.1.12
réflexion
renvoi d’une radiation par
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.