ISO/TS 21361:2025
(Main)Nanotechnologies — Method to quantify air concentrations of carbon black and amorphous silica in the nanoparticle size range in a mixed dust manufacturing environment
Nanotechnologies — Method to quantify air concentrations of carbon black and amorphous silica in the nanoparticle size range in a mixed dust manufacturing environment
This document specifies a method to quantify and identify air concentration (number of particles/cm3) of particles of either carbon black or amorphous silica, or both, by size in air samples collected in a mixed dust, industrial, manufacturing environment. This method is applicable to air samples collected with an electrical low pressure cascade impactor (ELPCI) for sampling in manufacturing environments where there are a variety of particle types contributing to the overall atmosphere. This method is applicable only to environments with chemically and physically distinct particles contributing to aerosols or where confounders can be controlled (e.g. diesel sources).
Nanotechnologies — Méthode de quantification des concentrations dans l'air de noir de carbone et de silice amorphe à l'échelle nanométrique dans un environnement de fabrication industrielle contenant des mélanges de poussières
Le présent document spécifie une méthode pour quantifier et identifier la concentration (nombre de particules/cm3) de particules de noir de carbone ou de silice amorphe, ou les deux, par taille dans les échantillons d’air prélevés dans un environnement de fabrication industrielle contenant des mélanges de poussières. Cette méthode est applicable aux échantillons d’air prélevés à l’aide d’un impacteur en cascade à basse pression à détection électrique (ELPCI) au sein d’environnements de fabrication où l’atmosphère générale contient une grande diversité de types de particules. Cette méthode n’est applicable qu’aux environnements dont les particules contribuant aux aérosols sont chimiquement et physiquement distinctes ou dans lesquels les matériaux parasites peuvent être contrôlés (particules provenant de moteurs diesel, par exemple).
General Information
Relations
Buy Standard
Standards Content (Sample)
Technical
Specification
ISO/TS 21361
Second edition
Nanotechnologies — Method to
2025-03
quantify air concentrations of
carbon black and amorphous silica
in the nanoparticle size range
in a mixed dust manufacturing
environment
Nanotechnologies — Méthode de quantification des
concentrations dans l'air de noir de carbone et de silice amorphe
à l'échelle nanométrique dans un environnement de fabrication
industrielle contenant des mélanges de poussières
Reference number
© ISO 2025
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Abbreviations . 2
5 Principle . 2
6 Reagents . 3
7 Apparatus . 4
7.1 Air sampling — Equipment and consumable supplies.4
7.1.1 Electrical low cascade pressure impactor (ELPCI) .4
7.1.2 Limit of detection (LOD) .4
7.1.3 Real-time aerosol monitor .5
7.1.4 Vacuum pump .5
7.1.5 Polycarbonate substrate .5
7.1.6 Hydrocarbon grease .6
7.2 Analytical/microscopy laboratories .6
7.3 Sample analysis — Equipment and consumables .6
7.3.1 Transmission electron microscope (TEM).6
7.3.2 Energy dispersive spectrometry (EDS) .6
7.3.3 TEM grid .6
8 Air sample collection . 6
8.1 Sampling procedure .6
8.2 Determination of sampling time .6
8.3 Sample collection procedure.7
9 Procedure for analysis. 7
9.1 General .7
9.2 Preparation of substrates .7
9.3 Sample analysis . .8
9.3.1 Instrument conditions.8
9.3.2 Data collection .8
9.4 Calculation of air concentration .9
10 Uncertainties and performance criteria . 10
10.1 General .10
10.2 Particle counting with the electrical low pressure cascade impactor (ELPCI) .10
10.3 Particle analysis with transmission electron microscopy (TEM) and energy dispersive
spectrometry (EDS) .11
11 Test report .11
Annex A (informative) Case study overview .12
Bibliography .13
iii
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of ISO document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent
rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a)
patent(s) which may be required to implement this document. However, implementers are cautioned that
this may not represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 229, Nanotechnologies.
This second edition cancels and replaces the first edition (ISO/TS 21361:2019) which has been technically
revised.
The main changes are as follows:
— references have been updated;
— minor clarifications have been made to the text.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
Introduction
Nanomaterials are widely used in industrial settings in the manufacture of consumer products. Carbon
black and amorphous silica are commonly used in consumer products, such as rubber products, insulating
materials, and others. Although these materials typically exist as agglomerates in dimensions larger than
the nanoscale, there is also the potential for worker exposure to these materials in the nanoscale size
range. In spite of the widespread use of nanomaterials such as these, quantification of air concentrations of
specific nanomaterials in mixed dust settings, such as a manufacturing environment, has been challenging
to date and has been identified as a hindrance to the development of nano-specific occupational exposure
limits (see References [3], [4] and [6]). This method outlines a technique whereby particles of carbon black
and amorphous silica can be identified, distinguished, and quantified (in terms of air concentrations) by
size in such manufacturing settings. It is anticipated that although this method is specific to carbon black
and amorphous silica, the general principles of the method can be applied to many materials in a variety
of manufacturing environments. This method advances beyond existing techniques for analysis in that it
provides quantitative information regarding exposure to specific materials by size; many other methods
provide quantitative information on nanoparticle exposures that are incapable of differentiating by material
type. This method includes both a defined methodology for collecting air samples in the manufacturing
settings as well as a methodology for analysing the sample to obtain appropriate information for quantifying
air concentration of the materials of interest. Application of this methodology has recently been published in
the peer-reviewed literature (see Reference [5]).
This document specifies a method to quantify and identify particles of either carbon black or amorphous
silica, or both, in air samples collected in a mixed dust, industrial, manufacturing environment. It describes
air sample collection and the characterization of the particles in the air samples by both particle size and
elemental composition. The method is defined for air samples collected with an electrical low pressure
cascade impactor (ELPCI). However, the method is suitable for sampling in manufacturing environments
where there are a variety of particle types contributing to the overall atmosphere. The particles in the
air sample are collected in the various stages of a cascade impactor with cut-offs for median particle size
between 6 nm and 10 µm. This impactor determines the number particle size distributio
...
Spécification
technique
ISO/TS 21361
Deuxième édition
Nanotechnologies — Méthode
2025-03
de quantification des
concentrations dans l'air de noir
de carbone et de silice amorphe
à l'échelle nanométrique dans
un environnement de fabrication
industrielle contenant des mélanges
de poussières
Nanotechnologies — Method to quantify air concentrations of
carbon black and amorphous silica in the nanoparticle size range
in a mixed dust manufacturing environment
Numéro de référence
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2025
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Abréviations . 2
5 Principe. 2
6 Réactifs . 3
6.1 Eau, exempte de fibres .3
6.2 Chloroforme, de qualité analytique .3
6.3 1-Méthyl-2-pyrrolidone . .4
6.4 Diméthylformamide.4
6.5 Acide acétique glacial .4
6.6 Acétone .4
7 Appareillage . 4
7.1 Prélèvement d’air — Équipement et consommables .4
7.1.1 Impacteur en cascade à basse pression à détection électrique (ELPCI) .4
7.1.2 Limite de détection (LDD) . . .5
7.1.3 Moniteur d’aérosols en temps réel . .5
7.1.4 Pompe à vide .5
7.1.5 Substrat de polycarbonate .5
7.1.6 Graisse d’hydrocarbure .6
7.2 Laboratoires d’analyse/de microscopie .6
7.3 Analyse des échantillons — Équipement et consommables .6
7.3.1 Microscope électronique à transmission (MET) .6
7.3.2 Spectromètre à sélection d’énergie (EDS) .6
7.3.3 Grille de MET .6
8 Prélèvement des échantillons d’air . 6
8.1 Mode opératoire de prélèvement .6
8.2 Détermination de la durée d’échantillonnage .7
8.3 Mode opératoire de prélèvement des échantillons .7
9 Mode opératoire d’analyse . 8
9.1 Généralités .8
9.2 Préparation des substrats .8
9.3 Analyse des échantillons .8
9.3.1 Conditions de mesure de l’instrument .8
9.3.2 Collecte des données .8
9.4 Calcul de la concentration dans l’air .10
10 Incertitudes et critères de performance . 10
10.1 Généralités .10
10.2 Comptage des particules avec l’impacteur en cascade à basse pression à détection
électrique (ELPCI) .10
10.3 Analyse des particules par microscopie électronique à transmission (MET)
et spectrométrie à dispersion d’énergie (EDS) .11
11 Rapport d’essai .12
Annexe A (informative) Présentation d’une étude de cas .13
Bibliographie . 14
iii
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes nationaux
de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est en général
confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude a le droit de faire
partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l’ISO participent également aux travaux. L’ISO collabore étroitement avec
la Commission électrotechnique internationale (IEC) en ce qui concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier, de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document
a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2
(voir www.iso.org/directives).
L’ISO attire l’attention sur le fait que la mise en application du présent document peut entraîner l’utilisation
d’un ou de plusieurs brevets. L’ISO ne prend pas position quant à la preuve, à la validité et à l’applicabilité de
tout droit de brevet revendiqué à cet égard. À la date de publication du présent document, l’ISO n’avait pas
reçu notification qu’un ou plusieurs brevets pouvaient être nécessaires à sa mise en application. Toutefois,
il y a lieu d’avertir les responsables de la mise en application du présent document que des informations
plus récentes sont susceptibles de figurer dans la base de données de brevets, disponible à l’adresse
www.iso.org/brevets. L’ISO ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits
de propriété.
Les appellations commerciales éventuellement mentionnées dans le présent document sont données pour
information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion de
l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles techniques au
commerce (OTC), voir www.iso.org/avant-propos.
Le présent document a été élaboré par le comité technique ISO/TC 229, Nanotechnologies.
Cette deuxième édition annule et remplace la première édition (ISO/TS 21361:2019), qui a fait l’objet d’une
révision technique.
Les principales modifications sont les suivantes:
— les références ont été mises à jour;
— des clarifications mineures ont été apportées au texte.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www.iso.org/fr/members.html.
iv
Introduction
Les nanomatériaux sont largement utilisés pour la fabrication des produits de consommation en milieu
industriel. Le noir de carbone et la silice amorphe sont couramment employés dans les produits de
consommation tels que les produits du caoutchouc, les matériaux isolants et autres. Bien que ces matériaux
existent généralement sous forme d’agglomérats de dimensions supérieures à l’échelle nanométrique, il
existe également un risque d’exposition des travailleurs à ces matériaux dans la plage granulométrique à
l’échelle nanométrique. Malgré l’usage répandu des nanomatériaux tels que ceux précités, la quantification
des concentrations dans l’air de nanomatériaux spécifiques dans les milieux contenant des mélanges de
poussières, tels que les environnements de fabrication, s’est avérée problématique jusqu’à aujourd’hui et
a été identifiée comme une entrave à la définition de limites d’exposition professionnelle spécifiques aux
nanomatériaux (voir Références [3], [4] et [6]). La présente méthode exploite une technique qui permet
d’identifier, de distinguer et de quantifier (en termes de concentrations dans l’ai
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.