IEC 60904-4:2019/COR1:2020
(Corrigendum)Corrigendum 1 - Photovoltaic devices - Part 4: Photovoltaic reference devices - Procedures for establishing calibration traceability
Corrigendum 1 - Photovoltaic devices - Part 4: Photovoltaic reference devices - Procedures for establishing calibration traceability
Corrigendum 1 - Dispositifs photovoltaïques - Partie 4: Dispositifs photovoltaïques de référence - Procédures pour établir la traçabilité de l'étalonnage
General Information
Relations
Standards Content (Sample)
IEC 2020
INTERNATIONAL ELECTROTECHNICAL COMMISSION
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
____________
IEC 60904-4 IEC 60904-4
Edition 2.0 2019-11 Édition 2.0 2019-11
PHOTOVOLTAIC DEVICES – DISPOSITIFS PHOTOVOLTAÏQUES –
Part 4: Photovoltaic reference devices – Partie 4: Dispositifs photovoltaïques de
Procedures for establishing cal
...
This May Also Interest You
IEC TS 62257-9-8:2025 provides baseline requirements for quality, durability and truth in advertising to protect consumers of off-grid renewable energy products. Evaluation of these requirements is based on tests described in IEC TS 62257-9-5. This document can be used alone or in conjunction with other international standards that address the safety and durability of components of off-grid renewable energy products.
This document applies to stand-alone renewable energy products having the following characteristics:
- The products are powered by photovoltaic (PV) modules or electromechanical power generating devices (such as dynamos), or are designed to use grid electricity to charge a battery or other energy-storage device for off-grid use. The requirements may also be appropriate as guidance for evaluating the quality of products with other power sources, such as thermoelectric generators.
- The peak power rating of the PV module or other power generating device is less than or equal to 350 W.
- The system evaluated includes all the loads (lighting, television, radio, fan, etc.) and load adapter cables that are sold or included as part of the kit or integrated into kit components.
- The PV module maximum power point voltage and the working voltage of any other components in the kit do not exceed 35 V. Exceptions are made for AC-to-DC converters that meet appropriate safety standards, and systems that include PV modules (or combinations of PV modules) with open-circuit voltage greater than 35 V that meet additional safety requirements beyond those assessed in IEC TS 62257-9-5.
This document includes provisions related to safety; however, it is not intended to be a comprehensive safety standard. In particular, this document is not intended to be used as an alternative to safety standards such as IEC 62368-1 or the IEC 60335 series for appliances such as radios and televisions that are included with stand-alone renewable energy products. Nor is it intended to replace the safety requirements of IEC 62281 or UN 38.3 for battery safety during transport, or safety requirements of IEC 61730-1 and IEC 61730-2 for PV modules intended for use outside the context of stand-alone renewable energy products.
- Technical specification174 pagesEnglish languagesale 15% off
IEC TS 62257-9-5:2024 provides support and strategies for institutions involved in rural electrification projects. It documents technical approaches for designing, building, testing, and maintaining off-grid renewable energy and hybrid systems with AC nominal voltage below 500 V, DC nominal voltage below 750 V and nominal power below 100 kVA.
The purpose of this document is to specify laboratory test methods for evaluating the quality assurance of stand-alone renewable energy products. This document is specifically related to renewable energy products that are packaged and made available to end-use consumers at the point of purchase as single, stand-alone products that do not require additional system components to function.
This document establishes the framework for creating a product specification, the basis for evaluating quality for a particular context. Product specifications include minimum requirements for quality standards and warranty requirements.
This document applies to stand-alone renewable energy products having the following characteristics: This document was written primarily for off-grid renewable energy products with batteries and PV modules with DC system voltages not exceeding 35 V and peak power ratings not exceeding 350 W. This document includes provisions related to safety; however, it is not intended to be a comprehensive safety standard. In particular, this document is not intended to be used as an alternative to safety standards such as IEC 62368-1 or IEC 60335 (all parts) for appliances such as radios and televisions that are included with stand-alone renewable energy products
- Technical specification417 pagesEnglish languagesale 15% off
IEC TS 60904-1-2:2024 describes procedures for the measurement of the current-voltage (I-V) characteristics of single junction bifacial photovoltaic devices in natural or simulated sunlight. It is applicable to encapsulated solar cells, sub-assemblies of such cells or entire PV modules. For measurements of I-V characteristics of non-encapsulated solar cells, IEC TS 63202-3 applies.
The requirements for measurement of I-V characteristics of standard (monofacial) PV devices are covered by IEC 60904-1, whereas this document describes the additional requirements for the measurement of I-V characteristics of bifacial PV devices.
This second edition cancels and replaces the first edition published in 2019. This edition includes the following significant technical changes with respect to the previous edition:
a) The scope has been updated and refers to IEC TS 63202-3 for the measurement of non‑encapsulated solar cells.
b) The requirements for the non-uniformity of irradiance have been updated and now refer to classifications introduced in IEC 60904-9.
c) The requirement for non-irradiated background has been revised.
d) Spectral mismatch corrections are no longer mandatory, unless required by another standard. Spectral mismatch would have to be considered in the measurement uncertainty.
e) The requirement regarding the calculation of bifaciality has been modified: Equivalent irradiance shall not be calculated based on the minimum bifaciality value between ISC and Pmax, but on the bifaciality of ISC.
- Technical specification22 pagesEnglish languagesale 15% off
- Standard2 pagesEnglish and French languagesale 15% off
- Standard7 pagesEnglish and French languagesale 15% off
IEC 62788-1-1:2024 defines test methods and reporting requirements for characteristics (optical, mechanical, electrical, thermal, and chemical) of non-rigid polymeric materials (e.g., poly(ethylene-co-vinyl acetate), EVA) intended for use in terrestrial photovoltaic (PV) modules as polymeric encapsulants.
The test methods in this document define how to characterize encapsulant materials in a manner representative of how they will be used in the module, which includes combination with other components such as frontsheets, backsheets, adhesives, edge seals, or glass.The methods described in this document support and supplement the safety- and performance-related tests defined on the PV module level, as defined in IEC 61730-2 and IEC 61215-1. This document also defines test methods for general assessment of material characteristics of polymeric encapsulants.
The test methods described in this document may be used for the purposes of: datasheet reporting (aiding module design or material research and development); process and manufacturing control (e.g., incoming or outgoing inspection); application in module safety and design type qualification protocols; or reliability and durability study/standards development
- Standard113 pagesEnglish and French languagesale 15% off
- Technical specification1 pageEnglish languagesale 15% off
- Standard9 pagesEnglish and French languagesale 15% off
IEC 62788-7-3:2022 defines the test methods that can be used for evaluating the abrasion of materials and coatings in photovoltaic modules or other solar devices. This document may be applied to components on the incident surface (including coatings, frontsheet, and glass) as well as the back surface (including backsheets or back glass). This document is intended to address abrasion of PV module surfaces and any coatings present using representative specimens (e.g. which can be centimetres in size); the methods and apparatus used here can also be used on PV module specimens (e.g. meters in size).
- Standard44 pagesEnglish languagesale 15% off
- Standard43 pagesEnglish and French languagesale 15% off
IEC TS 62788-2:2024 defines test methods and datasheet reporting requirements for safety and performance-related properties (mechanical, electrical, thermal, optical, chemical) of non‑rigid polymeric materials intended for use in terrestrial photovoltaic modules as polymeric front- and backsheets. The test methods in this document define how to characterize front- and backsheet materials and their components in a manner representative of how they will be used in the module, which eventually includes combination with other matched components such as encapsulants or adhesives. Results of testing described in this document are called by IEC 62788-2-1 for safety qualification of polymeric front- and backsheets on component level and support the safety and performance-related tests defined on the PV module level as defined in the series IEC 61730 (for safety) and IEC 61215 (for performance). This document also defines test methods for assessing inherent material characteristics of polymeric front- and backsheets or their components, which can be required in datasheet reporting or can be useful in the context of product development or design of PV modules.
This second edition cancels and replaces the first edition published in 2017. This edition includes the following significant technical changes with respect to the previous edition:
a) With revision of IEC 61730-1 the requirements for the polymeric front- and backsheet have been moved from IEC 61730-1 into IEC 62788-2-1. This is reflected accordingly.
b) The tensile testing method has been refined based on findings of round robin tests, including updated drawings.
c) A thermal pre-exposure method has been introduced to be equivalent to the thermal effects of a "lamination" cycle. This pre-exposure defines the "fresh" state of the front- or backsheet in final application for evaluation of changes in ageing tests. For practical reasons, an oven exposure has been defined as an equivalent test.
d) The multiple functions of the lamination protrusion test (previously DTI test) have been clarified, to identify and measure RUI layer thickness as well as to identify layers for which the comparative tracking index (CTI) needs to be determined. Also the content of IEC 62788-2-1 has been updated, by which the lamination protrusion test and MST 04 are additionally set in perspective to each other via engineering judgement.
e) The DC breakdown voltage test method has been updated and the option to perform a withstand voltage test has been added (to reduce the required measurement voltage). The correction of DC breakdown voltage ( ) measurements, needed in the presence of non‑RUI layers and after the lamination protrusion test, has been defined more precisely.
f) Details for thickness measurement have been added (engineered surface roughness due to embossing).
g) The adhesion test methods have been reviewed and updated. The single cantilevered beam test has been added. Figures have been updated to align with IEC 62788-1-1.
h) The thermal failsafe test has been added as a test method based on discussion in the parallel project for IEC 62788-2-1. The test method offers a single temperature-point evaluation to include elongation at break to the thermal endurance evaluation.
I) A sequential UV/TC test ("solder bump test") has been added.
- Technical specification94 pagesEnglish languagesale 15% off
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.