IEC 63374:2025
(Main)Nuclear power plants - Instrumentation systems important to safety - Characteristics and test methods of nuclear reactor reactivity meters
Nuclear power plants - Instrumentation systems important to safety - Characteristics and test methods of nuclear reactor reactivity meters
IEC 63374:2025 specifies the characteristics and test methods for reactivity meters. Other methods for measuring reactivity are not addressed in this document. This document provides guidance for the design, production and operation of reactivity meters. This document is applicable to various types of nuclear reactors that can be described by the neutron kinetic point reactor model, such as pressurized water reactors (PWRs), boiling-water reactors (BWRs) or fast breeder reactors (FBRs). This document is applicable to all on-line measuring instruments that directly obtain reactivity values by measuring the neutron flux. The subject relates to the reactor nuclear parameter measurement domain.
Centrales nucléaires - Systèmes d'instrumentation importants pour la sûreté - Caractéristiques et méthodes d'essai des réactimètres d'un réacteur nucléaire
L'IEC 63374:2025 spécifie les caractéristiques et les méthodes d'essai des réactimètres. Les autres méthodes de mesurage de la réactivité ne sont pas traitées dans le présent document. Le présent document fournit des recommandations relatives à la conception, à la production et au fonctionnement des réactimètres. Le présent document s'applique à différents types de réacteurs nucléaires qui peuvent être décrits par le modèle de réacteur ponctuel de la cinétique des neutrons, tels que les réacteurs à eau pressurisée (PWR, pressurized water reactors), les réacteurs à eau bouillante (BWR, boiling-water reactors) ou les réacteurs surgénérateurs rapides (FBR, fast breeder reactors). Le présent document s'applique à tous les appareils de mesure externes qui permettent d'obtenir directement les valeurs de réactivité en mesurant le flux neutronique. Le sujet est lié au domaine de mesure des paramètres nucléaires du réacteur.
General Information
Standards Content (Sample)
IEC 63374 ®
Edition 1.0 2025-10
INTERNATIONAL
STANDARD
Nuclear power plants - Instrumentation systems important to safety -
Characteristics and test methods of nuclear reactor reactivity meters
ICS 27.120.20; 27.120.10 ISBN 978-2-8327-0691-6
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
The advanced search enables to find IEC publications by a publications previews, graphical symbols and the glossary.
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.
replaced and withdrawn publications.
Electropedia - www.electropedia.org
The world's leading online dictionary on electrotechnology,
IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
once a month by email. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
CONTENTS
FOREWORD . 2
INTRODUCTION . 4
1 Scope . 6
2 Normative references . 6
3 Terms and definitions . 6
4 Abbreviated terms . 9
5 Neutron kinetics and point reactor model . 9
5.1 General . 9
5.2 Point reactor model . 9
5.3 Reactivity calculation based on point reactor model . 10
5.4 Coefficients of the point reactor model . 10
6 Types of reactivity meters . 10
7 Characteristics of reactivity meters . 11
7.1 General . 11
7.2 Type of detector and input signal . 11
7.3 Output signal . 11
7.4 Performances . 12
7.4.1 Accuracy . 12
7.4.2 Response time . 13
7.4.3 Verification . 13
8 Design and qualification . 13
9 Test methods . 14
9.1 General consideration on tests . 14
9.1.1 Consideration on accuracy . 14
9.1.2 Consideration on response time . 14
9.2 Devices to test reactivity meters . 14
9.2.1 Point reactor simulator . 14
9.2.2 Exponential signal generator . 15
9.3 Reactivity meter test methods (with simulator or signal generator) . 15
9.3.1 Accuracy . 15
9.3.2 Response time . 16
9.4 Reactivity meter test methods (on reactor) . 16
Annex A (informative) Uses of a reactivity meter on NPP . 17
A.1 Subcritical conditions – Subcritical approach . 17
A.2 Physical tests . 17
A.3 Permanent surveillance (full power) . 18
A.4 Safety . 18
Figure 1 – Schematic diagram of a typical reactivity meter . 11
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
Nuclear power plants - Instrumentation systems important to safety -
Characteristics and test methods of nuclear reactor reactivity meters
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 63374 has been prepared by subcommittee 45A: Instrumentation, control and electrical
power systems of nuclear facilities, of IEC technical committee 45: Nuclear instrumentation. It
is an International Standard.
The text of this International Standard is based on the following documents:
Draft Report on voting
45A/1611/FDIS 45A/1621/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn, or
• revised.
INTRODUCTION
a) Technical background, main issues and organization of the document
This document focuses on characteristics and test methods of nuclear reactor reactivity
meters. Reactivity is the fundamental parameter that instantaneously characterizes the
evolution of the power of a reactor. The measurement of reactivity in a nuclear power plant
is used to indicate the deviation of the effective neutron multiplication factor from unity. A
reactivity meter directly calculates the reactivity from a measurement of neutron flux of the
reactor by solving the kinetic equations of the point reactor model. It is intended that this
document be used by operators of nuclear power plants (NPPs), systems evaluators and
licensors.
b) Situation of this document in the structure of the IEC SC 45A standard series
IEC 63374 is a third level IEC/SC 45A document. For more details on the structure of the
IEC SC 45A standard series, see item d) of this Introduction.
c) Recommendations and limitations regarding the application of this document
To ensure that this document will continue to be relevant in future years, the emphasis has
been placed on issues of principle, rather than specific technologies.
d) Description of the structure of the IEC SC 45A standard series and relationships with
other IEC documents and other bodies' documents (IAEA, ISO)
The IEC SC 45A standard series comprises a consistent set of documents organised in a
hierarchy of four levels. The top-level documents of the IEC SC 45A standard series are
IEC 61513 and IEC 63046, covering respectively general requirements for instrumentation
and control (I&C) systems and general requirements for electrical power systems of NPPs.
IEC 61513 and IEC 63046 adopt an overall system life-cycle framework and constitute,
along with the relevant second-level standards, the nuclear implementation of the basic
safety series IEC 61508.
IEC 61513 and IEC 63046 refer directly to other IEC SC 45A standards for general
requirements for specific topics, such as categorization of functions and classification of
systems, qualification, separation, defence against common cause failure, control room design,
electromagnetic compatibility, human factors engineering, cybersecurity, software and
hardware aspects for programmable digital systems, coordination of safety and security
requirements and management of ageing.
At a third level, IEC SC 45A standards not directly referenced by IEC 61513 or by IEC 63046
are standards related to specific requirements for specific equipment, technical methods, or
activities. Usually, these documents refer to second-level documents for general requirements
and can be used on their own.
A fourth level extending the IEC SC 45A standard series corresponds to Technical Reports
which are not normative.
The IEC SC 45A standards series consistently implements and details the safety and security
principles and basic aspects provided in the relevant IAEA safety standards and in the relevant
documents of the IAEA nuclear security series (NSS). In particular this includes the IAEA
requirements SSR-2/1 , establishing safety requirements related to the design of nuclear power
plants (NPPs), the IAEA safety guide SSG-30 dealing with the safety classification of structures,
systems and components in NPPs, the IAEA safety guide SSG-39 dealing with the design of
instrumentation and control systems for NPPs, the IAEA safety guide SSG-34 dealing with the
design of electrical power systems for NPPs, the IAEA safety guide SSG-51 dealing with human
factors engineering in the design of NPPs and the implementing guide NSS42-G for computer
security at nuclear facilities. The safety and security terminology and definitions used by the
SC 45A standards are consistent with those used by the IAEA.
IEC 61513 and IEC 63046 refer to ISO 9001 as well as to IAEA GSR part 2 and IAEA GS-G-3.1
and IAEA GS-G-3.5 for topics related to quality assurance (QA).
At level 2, regarding nuclear security, IEC 62645 is the entry document for the IEC/SC 45A
security standards. It builds upon the valid high-level principles and main concepts of the
generic security standards, in particular ISO/IEC 27001 and ISO/IEC 27002; it adapts them and
completes them to fit the nuclear context and coordinates with the IEC 62443 series. At level 2,
IEC 60964 is the entry document for the IEC/SC 45A control rooms standards, IEC 63351 is the
entry document for the human factors engineering standards and IEC 62342 is the entry
document for the ageing management standards.
NOTE IEC TR 63400 provides a more comprehensive description of the overall structure of the IEC SC 45A
standards series and of its relationship with other standards bodies and standards.
1 Scope
This document specifies the characteristics and test methods for reactivity meters. Other
methods for measuring reactivity are not addressed in this document.
This document provides guidance for the design, production and operation of reactivity meters.
This document is applicable to various types of nuclear reactors that can be described by the
neutron kinetic point reactor model, such as pressurized water reactors (PWRs), boiling-water
reactors (BWRs) or fast breeder reactors (FBRs).
This document is applicable to all on-line measuring instruments that directly obtain reactivity
values by measuring the neutron flux. The subject relates to the reactor nuclear parameter
measurement domain.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 60515, Nuclear power plants - Instrumentation important to safety - Radiation detectors -
Characteristics and test methods
IEC 60880, Nuclear power plants - Instrumentation and control systems important to safety -
Software aspects for computer-based systems performing category A functions
IEC 62003, Nuclear power plants - Instrumentation and control important to safety -
Requirements for electromagnetic compatibility testing
IEC 61226, Nuclear power plants - Instrumentation, control and electrical power systems
important to safety - Categorization of functions and classification of systems
IEC 62138, Nuclear power plants - Instrumentation and control systems important to safety -
Software aspects for computer-based systems performing category B or C functions
IEC/IEEE 60780-323, Nuclear facilities - Electrical equipment important to safety - Qualification
IEC/IEEE 60980-344, Nuclear facilities - Equipment important to safety - Seismic qualification
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
• IEC Electropedia: available at https://www.electropedia.org/
• ISO Online browsing platform: available at https://www.iso.org/obp
3.1
correspondence table (reactivity versus time constant)
table giving the correspondence value between reactivity and reactor time constant
Note 1 to entry: The correspondence table (reactivity versus time constant) is also called the “Nordheim table”.
Note 2 to entry: When the reactivity of a reactor is constant and positive, the time constant stabilizes at a fixed
value. The corresponding reactivity is given by the correspondence table (reactivity versus time constant). The
reactor time constant is either the doubling time or the period. Doubling time is the time for the neutron flux to be
multiplied by two, with the other parameters assumed unchanged.
3.2
criticality
condition of a nuclear system having an effective neutron multiplication factor equal to unity
[SOURCE: IEC 60050-395:2014, 395-07-05, modified – Note 1 to entry has been deleted]
3.3
delayed neutron precursors
fission products which disintegrate by emitting a neutron
Note 1 to entry: To determine the neutron behaviour of the core of a nuclear reactor, the delayed neutron precursors
are distributed in several groups. Each group is characterized by its number (i), its disintegration time constant (λ ),
i
and its concentration (C ).
i
3.4
neutron generation time
mean time between the birth of a neutron from fission to produce one new neutron
Note 1 to entry: Neutron generation time and neutron lifetime are linked together by the following formula:
L = Lk/
g eff
Where
L is neutron generation time, the unit is (s)
g
L is neutron lifetime, the unit is (s)
k is the effective neutron multiplication factor
eff
3.5
neutron lifetime
mean time between the birth of a neutron from fission and its death (disappearance by
absorption or escape)
3.6
point reactor model
space-independent neutron kinetics equations in which neutron density and delayed neutron
precursors concentrations are only a function of time
3.7
point reactor simulator
instrument that generates signals reproducing those produced by a neutron detector located
close to the core of a nuclear reactor
Note 1 to entry: The time dependence evolution of the signals is determined by the point reactor model according
to the reactivity applied to the model.
3.8
reactivity
quantity such as
ρ 1−
k
eff
where
k is the effective neutron multiplication factor
eff
Note 1 to entry: The parameter ρ gives the deviation from the criticality of a nuclear chain reactor which is such
that positive values correspond to a supercritical state and negative values to a subcritical state.
ρ
Note 2 to entry: is a dimensionless parameter, but in practice it is expressed by using two types of units
depending on the engineering requirements:
−5
• pcm = 10
ρ
• dollar =
β
[SOURCE: IEC 60050-395-07-07:2014, modified – Note 2 to entry has been added]
3.9
reactivity meter
electronic assembly which, in association with one or more detectors, indicates the reactivity of
a nuclear reactor
[SOURCE: IEC 60050-395-07-41:2014, 395-07-41, modified – Note 1 to entry has been
removed]
3.10
reactor time constant
reactor period
time required for the neutron flux in a nuclear reactor to change by a factor e equal to 2,718…,
when the neutron flux is rising or falling exponentially
Note 1 to entry: Doubling time is the time for the physical power to be multiplied by two, with the other parameters
assumed unchanged.
[SOURCE: IEC 60050-395:2014, 395-07-04]
3.11
step response time
duration between the instant when the measurand (or quantity supplied) is subjected to a
specified abrupt change and the instant when the indication (or quantity supplied) reaches and
remains within specified limits of its final steady-state value
Note 1 to entry: This definition is the one conventionally used for measuring instruments.
[SOURCE: IEC 6005
...
IEC 63374 ®
Edition 1.0 2025-10
NORME
INTERNATIONALE
Centrales nucléaires - Systèmes d'instrumentation importants pour la sûreté -
Caractéristiques et méthodes d'essai des réactimètres d'un réacteur nucléaire
ICS 27.120.20; 27.120.10 ISBN 978-2-8327-0691-6
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.
Recherche de publications IEC - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
dans 25 langues additionnelles. Egalement appelé
Published détaille les nouvelles publications parues.
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.
Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
SOMMAIRE
AVANT-PROPOS . 2
INTRODUCTION . 4
1 Domaine d’application . 6
2 Références normatives . 6
3 Termes et définitions . 7
4 Abréviations . 9
5 Cinétique des neutrons et modèle de réacteur ponctuel . 9
5.1 Généralités . 9
5.2 Modèle de réacteur ponctuel . 9
5.3 Calcul de la réactivité à partir du modèle de réacteur ponctuel . 10
5.4 Coefficients du modèle de réacteur ponctuel . 10
6 Types de réactimètres . 11
7 Caractéristiques des réactimètres . 11
7.1 Généralités . 11
7.2 Type de détecteur et signal d'entrée . 11
7.3 Signal de sortie . 12
7.4 Performances . 13
7.4.1 Exactitude . 13
7.4.2 Temps de réponse . 13
7.4.3 Vérification . 14
8 Conception et qualification . 14
9 Méthodes d’essai. 14
9.1 Considérations générales sur les essais . 14
9.1.1 Considérations sur l'exactitude . 14
9.1.2 Considérations sur le temps de réponse . 14
9.2 Dispositifs pour les essais des réactimètres . 15
9.2.1 Simulateur de réacteur ponctuel . 15
9.2.2 Générateur de signaux exponentiels . 15
9.3 Méthodes d'essai du réactimètre (avec simulateur ou générateur de signaux) . 15
9.3.1 Exactitude . 15
9.3.2 Temps de réponse . 16
9.4 Méthodes d'essai du réactimètre (sur le réacteur) . 17
Annexe A (informative) Utilisations d'un réactimètre sur une centrale nucléaire . 18
A.1 Conditions sous-critiques – Approche sous-critique . 18
A.2 Essais physiques . 18
A.3 Surveillance permanente (pleine puissance) . 19
A.4 Sécurité . 19
Figure 1 – Schéma d'un réactimètre type . 11
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
____________
Centrales nucléaires - Systèmes d'instrumentation importants
pour la sûreté - Caractéristiques et méthodes d'essai
des réactimètres d'un réacteur nucléaire
AVANT-PROPOS
1) La Commission Électrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée
de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l’IEC). L’IEC a pour objet de
favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de
l'électricité et de l'électronique. À cet effet, l’IEC – entre autres activités – publie des Normes internationales,
des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des
Guides (ci-après dénommés "Publication(s) de l’IEC"). Leur élaboration est confiée à des comités d'études, aux
travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations
internationales, gouvernementales et non gouvernementales, en liaison avec l’IEC, participent également aux
travaux. L’IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des
conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de l’IEC concernant les questions techniques représentent, dans la mesure du
possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l’IEC intéressés
sont représentés dans chaque comité d’études.
3) Les Publications de l’IEC se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de l’IEC. Tous les efforts raisonnables sont entrepris afin que l’IEC
s'assure de l'exactitude du contenu technique de ses publications; l’IEC ne peut pas être tenue responsable de
l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l’IEC s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de l’IEC dans leurs publications nationales
et régionales. Toutes divergences entre toutes Publications de l’IEC et toutes publications nationales ou
régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
5) L’IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants
fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de
conformité de l’IEC. L’IEC n'est responsable d'aucun des services effectués par les organismes de certification
indépendants.
6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
7) Aucune responsabilité ne doit être imputée à l’IEC, à ses administrateurs, employés, auxiliaires ou mandataires,
y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l’IEC,
pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque
nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses
découlant de la publication ou de l'utilisation de cette Publication de l’IEC ou de toute autre Publication de l’IEC,
ou au crédit qui lui est accordé.
8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.
9) L'IEC attire l'attention sur le fait que la mise en application du présent document peut entraîner l'utilisation d'un
ou de plusieurs brevets. L'IEC ne prend pas position quant à la preuve, à la validité et à l'applicabilité de tout
droit de brevet revendiqué à cet égard. À la date de publication du présent document, l'IEC n'a pas reçu
notification qu'un ou plusieurs brevets pouvaient être nécessaires à sa mise en application. Toutefois, il y a lieu
d'avertir les responsables de la mise en application du présent document que des informations plus récentes
sont susceptibles de figurer dans la base de données de brevets, disponible à l'adresse https://patents.iec.ch.
L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets.
L’IEC 63374 a été établie par le sous-comité 45A: Systèmes d'instrumentation, de contrôle-
commande et d'alimentation électrique des installations nucléaires, du comité d'études 45 de
l'IEC: Instrumentation nucléaire. Il s'agit d'une Norme internationale.
Le texte de cette Norme internationale est issu des documents suivants:
Projet Rapport de vote
45A/1611/FDIS 45A/1621/RVD
Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant
abouti à son approbation.
La langue employée pour l'élaboration de cette Norme internationale est l'anglais.
Ce document a été rédigé selon les Directives ISO/IEC, Partie 2, il a été développé selon les
Directives ISO/IEC, Partie 1 et les Directives ISO/IEC, Supplément IEC, disponibles sous
www.iec.ch/members_experts/refdocs. Les principaux types de documents développés par
l'IEC sont décrits plus en détail sous www.iec.ch/publications.
Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité
indiquée sur le site web de l'IEC sous webstore.iec.ch dans les données relatives au document
recherché. À cette date, le document sera
• reconduit,
• supprimé, ou
• révisé.
INTRODUCTION
a) Contexte technique, questions principales et structure du document
Le présent document traite des caractéristiques et des méthodes d'essai des réactimètres
de réacteurs nucléaires. La réactivité est le paramètre fondamental qui caractérise
instantanément l'évolution de la puissance d'un réacteur. Le mesurage de la réactivité dans
une centrale nucléaire est utilisé pour indiquer l'écart du facteur de multiplication effectif de
neutrons par rapport à l'unité. Un réactimètre calcule la réactivité directement au moyen
d'un mesurage du flux neutronique du réacteur en résolvant les équations cinétiques du
modèle de réacteur ponctuel. Le présent document est destiné à être utilisé par les
exploitants de centrales nucléaires, les évaluateurs de systèmes et les concédants de
licence.
b) Positionnement du présent document dans la structure de la collection de normes du
SC 45A de l'IEC
L'IEC 63374 est un document de troisième niveau du SC 45A de l'IEC. Pour plus
d'informations sur la structure de la collection de normes du SC 45A de l'IEC, voir le point d)
de la présente Introduction.
c) Recommandations et limites relatives à l'application du présent document
Afin d'assurer la pertinence du présent document pour les années à venir, l'accent est mis
sur les questions de principe plutôt que sur des technologies particulières.
d) Description de la structure de la collection de normes du SC 45A de l'IEC et des
relations avec d'autres documents de l'IEC, et avec les documents d'autres
organisations (AIEA, ISO)
La collection de normes du SC 45A de l'IEC comporte un ensemble cohérent de documents
organisés selon une structure à quatre niveaux. Les documents de niveau supérieur dans
la collection de normes du SC 45A de l'IEC sont l'IEC 61513 et l'IEC 63046, qui traitent
respectivement des exigences générales relatives aux matériels et systèmes
d'instrumentation et de contrôle-commande (I&C) et des exigences générales pour les
systèmes d'alimentation électrique des centrales nucléaires (NPP, nuclear power plants).
L'IEC 61513 et l'IEC 63046 adoptent un cycle de vie d'ensemble des systèmes et
constituent, avec les normes de deuxième niveau pertinentes, le socle de mise en œuvre
de la série de normes de sûreté IEC 61508.
L'IEC 61513 et l'IEC 63046 font directement référence à d'autres normes du SC 45A de l'IEC
quant aux exigences générales relatives à des sujets spécifiques, tels que la catégorisation
des fonctions et le classement des systèmes, la qualification, la séparation des systèmes, la
défense contre les défaillances de cause commune, la conception des salles de commande, la
compatibilité électromagnétique, l'ingénierie des facteurs humains, la cybersécurité, les
aspects logiciels et matériels relatifs aux systèmes numériques programmables, la coordination
des exigences de sûreté et de sécurité, et la gestion du vieillissement.
Au troisième niveau, les normes du SC 45A de l'IEC, qui ne sont pas citées en référence
directement par l'IEC 61513 ou l'IEC 63046, traitent d'exigences particulières relatives à des
matériels particuliers, des méthodes techniques ou des activités spécifiques. Généralement,
ces documents font référence aux documents de deuxième niveau pour les exigences
générales et peuvent être utilisés de façon isolée.
Un quatrième niveau qui est une extension de la collection de normes du SC 45A de l'IEC
correspond aux rapports techniques qui ne sont pas des documents normatifs.
Les normes de la collection du SC 45A de l'IEC mettent en œuvre de manière systématique et
décrivent les principes de sûreté et de sécurité et les aspects fondamentaux donnés dans les
normes de sûreté de l'AIEA pertinentes pour les centrales nucléaires, ainsi que dans les
documents pertinents de la collection de l'AIEA pour la sécurité nucléaire (NSS, nuclear security
series). Cela concerne en particulier le document d'exigences SSR-2/1 qui établit les exigences
de sûreté relatives à la conception des centrales nucléaires, le guide de sûreté SSG-30 qui
traite du classement de sûreté des structures, systèmes et composants des centrales
nucléaires, le guide de sûreté SSG-39 qui traite de la conception des systèmes
d'instrumentation et de contrôle-commande des centrales nucléaires, le guide de sûreté
SSG-34 qui traite de la conception des systèmes d'alimentation électrique des centrales
nucléaires, le guide de sûreté SSG-51 qui traite de l'ingénierie des facteurs humains lors de la
conception des centrales nucléaires et le guide de mise en œuvre NSS42-G qui traite de la
sécurité informatique pour les installations nucléaires. La terminologie et les définitions
utilisées pour la sûreté et la sécurité dans les normes établies par le SC 45A sont conformes à
celles utilisées par l'AIEA.
Les normes IEC 61513 et IEC 63046 font référence à la norme ISO 9001, ainsi qu'aux
documents AIEA GSR partie 2 et AIEA GS-G-3.1 et AIEA GS-G-3.5 pour ce qui concerne
l'assurance qualité (QA, quality assurance).
Au deuxième niveau, en ce qui concerne la sûreté nucléaire, l'IEC 62645 est le document
chapeau des normes de sécurité du SC 45A de l'IEC. Elle se fonde sur les principes pertinents
de haut niveau et sur les concepts principaux des normes génériques de sécurité, en particulier
l'ISO/IEC 27001 et l'ISO/IEC 27002; elle les adapte et les complète pour qu'ils deviennent
pertinents pour le secteur nucléaire; elle est coordonnée étroitement avec la série de normes
IEC 62443. Au deuxième niveau, l'IEC 60964 est le document chapeau des normes du SC 45A
de l'IEC applicables aux salles de commande, l'IEC 63351 est le document chapeau des normes
applicables à l'ingénierie des facteurs humains et l'IEC 62342 est le document chapeau des
normes applicables à la gestion du vieillissement.
NOTE L'IEC TR 63400 donne une description plus complète de la structure globale de la collection de normes du
SC 45A de l'IEC, ainsi que ses relations avec les autres organismes de normalisation et les autres normes.
1 Domaine d’application
Le présent document spécifie les caractéristiques et les méthodes d'essai des réactimètres.
Les autres méthodes de mesurage de la réactivité ne sont pas traitées dans le présent
document.
Le présent document fournit des recommandations relatives à la conception, à la production et
au fonctionnement des réactimètres. Le présent document s'applique à différents types de
réacteurs nucléaires qui peuvent être décrits par le modèle de réacteur ponctuel de la cinétique
des neutrons, tels que les réacteurs à eau pressurisée (PWR, pressurized water reactors), les
réacteurs à eau bouillante (BWR, boiling-water reactors) ou les réacteurs surgénérateurs
rapides (FBR, fast breeder reactors).
Le présent document s'applique à tous les appareils de mesure externes qui permettent
d'obtenir directement les valeurs de réactivité en mesurant le flux neutronique. Le sujet est lié
au domaine de mesure des paramètres nucléaires du réacteur.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu'ils constituent, pour tout ou partie
de leur contenu, des exigences du présent document. Pour les références datées, seule
l'édition citée s'applique. Pour les références non datées, la dernière édition du document de
référence s’applique (y compris les éventuels amendements).
IEC 60515, Centrales nucléaires de puissance - Instrumentation importante pour la sûreté -
Détecteurs de rayonnements - Caractéristiques et méthodes d'essais
IEC 60880, Centrales nucléaires de puissance - Instrumentation et contrôle-commande
importants pour la sûreté - Aspects logiciels des systèmes programmés réalisant des fonctions
de catégorie A
IEC 62003, Centrales nucléaires de puissance - Instrumentation et contrôle-commande
importants pour la sûreté - Exigences relatives aux essais de compatibilité électromagnétique
IEC 61226, Centrales nucléaires de puissance - Systèmes d'instrumentation, de contrôle-
commande et d'alimentation électrique importants pour la sûreté - Catégorisation des fonctions
et classement des systèmes
IEC 62138, Centrales nucléaires de puissance - Systèmes d'instrumentation et de contrôle-
commande importants pour la sûreté - Aspects logiciels des systèmes informatisés réalisant
des fonctions de catégorie B ou C
IEC/IEEE 60780-323, Installations nucléaires - Équipements électriques importants pour la
sûreté - Qualification
IEC/IEEE 60980-344, Installations nucléaires - Équipements importants pour la sûreté -
Qualification sismique
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées
en normalisation, consultables aux adresses suivantes:
• IEC Electropedia: disponible à l’adresse https://www.electropedia.org/
• ISO Online browsing platform: disponible à l’adresse https://www.iso.org/obp
3.1
table de correspondance (réactivité en fonction de la constante de temps)
table qui donne la valeur de correspondance entre la réactivité et la constante de temps d'un
réacteur nucléaire
Note 1 à l'article: La table de correspondance (réactivité en fonction de la constante de temps) est également
appelée "table Nordheim".
Note 2 à l'article: Lorsque la réactivité d'un réacteur est constante et positive, la constante de temps se stabilise à
une valeur fixe. La réactivité correspondante est donnée par la table de correspondance (réactivité en fonction de la
constante de temps). La constante de temps d'un réacteur nucléaire est soit le temps de doublement soit la période.
Le temps de doublement est le temps pendant lequel le flux neutronique est multiplié par deux, les autres paramètres
pris en compte étant inchangés.
3.2
criticité
état d'un système nucléaire ayant un facteur de multiplication effectif égal à l'unité
[SOURCE: IEC 60050-395:2014, 395-07-05, modifié – La note 1 à l’article a été supprimée]
3.3
précurseurs de neutrons retardés
produits de fission qui se désintègrent en émettant un neutron
Note 1 à l'article: Pour déterminer le comportement neutronique du cœur d'un réacteur nucléaire, les précurseurs
de neutrons retardés sont répartis en plusieurs groupes. Chaque groupe se caractérise par son nombre (i), sa
constante de temps de désintégration (λ ) et sa concentration (C ).
i i
3.4
temps de génération des neutrons
intervalle de temps entre la naissance d'un neutron et la fission qui produit un nouveau neutron
Note 1 à l'article: Le temps de génération des neutrons et la durée de vie des neutrons sont liés par la formule
suivante:
L = Lk/
g eff
Où
L est le temps de génération de neutrons, en (s)
g
L est la durée de vie des neutrons, en (s)
k est le facteur de multiplication effectif de neutrons
eff
3.5
durée de vie des neutrons
intervalle de temps entre la naissance d'un neutron par fission et sa mort (disparition par
absorption ou échappement)
3.6
modèle de réacteur ponctuel
équations de la cinétique des neutrons indépendantes de l'espace, dans lesquelles la densité
de neutrons et les concentrations de précurseurs de neutrons retardés sont uniquement
fonction du temps
3.7
simulateur de réacteur ponctuel
instrument qui génère des signaux qui reproduisent ceux générés par un détecteur de neutrons
situé à proximité du cœur d'un réacteur nucléaire
Note 1 à l'article: L'évolution des signaux en fonction du temps est déterminée par le modèle de réacteur ponctuel
selon la réactivité appliquée au modèle.
3.8
réactivité
grandeur telle que
ρ 1−
k
eff
où
k est le facteur de multiplication effectif de neutrons
eff
Note 1 à l'article: Le paramètre ρ traduit l'écart qui le sépare de la criticité d'un réacteur nucléaire en chaîne, les
valeurs positives correspondant à un état surcritique et les valeurs négatives à un état sous-critique.
ρ
Note 2 à l'article: est un paramètre sans dimension, mais il est exprimé en pratique par deux types d'unités qui
dépendent des exigences d'ingénierie:
−5
• pcm = 10
ρ
• dollar =
β
[SOURCE: IEC 60050-395-07-07:2014, modifié – La Note 2 à l’article a été ajoutée]
3.9
réactimètre
ensemble électronique qui, associé à un ou plusieurs détecteurs, fournit une indication de la
réactivité d'un réacteur nucléaire
[SOURCE: IEC 60050-395-07-41:2014, 395-07-41, modifié – La note 1 à l’article a été
supprimée]
3.10
constante de temps d'un réacteur nucléaire
période d’un réacteur nucléaire
temps nécessaire pour que le flux de neutrons dans un réacteur nucléaire varie d'un facteur e
égal à 2,718., lorsque le flux de neutrons augmente ou diminue de façon exponentielle
Note 1 à l'article: Le temps de doublement est le temps pendant lequel la puissance physique est multipliée par
deux, les autres paramètres pris en compte étant inchangés.
[SOURCE: IEC 60050-395:2014, 395-07-04]
=
3.11
temps de réponse à un échelon
durée comprise entre l'instant où le mesurande (ou la grandeur fournie) subit un changement
brusque spécifié et l'instant où l'indication (ou la grandeur fournie) atteint, et se maintient dans
une plage de limites spécifiées autour de sa valeur finale, en régime établi
Note 1 à l'artic
...
IEC 63374 ®
Edition 1.0 2025-10
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Nuclear power plants - Instrumentation systems important to safety -
Characteristics and test methods of nuclear reactor reactivity meters
Centrales nucléaires - Systèmes d'instrumentation importants pour la sûreté -
Caractéristiques et méthodes d'essai des réactimètres d'un réacteur nucléaire
ICS 27.120.20, 27.120.10 ISBN 978-2-8327-0691-6
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
The advanced search enables to find IEC publications by a publications previews, graphical symbols and the glossary.
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.
replaced and withdrawn publications.
Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished The world's leading online dictionary on electrotechnology,
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
once a month by email. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.
Recherche de publications IEC - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
Published détaille les nouvelles publications parues. dans 25 langues additionnelles. Egalement appelé
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.
Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
CONTENTS
FOREWORD . 2
INTRODUCTION . 4
1 Scope . 6
2 Normative references . 6
3 Terms and definitions . 6
4 Abbreviated terms . 9
5 Neutron kinetics and point reactor model . 9
5.1 General . 9
5.2 Point reactor model . 9
5.3 Reactivity calculation based on point reactor model . 10
5.4 Coefficients of the point reactor model . 10
6 Types of reactivity meters . 10
7 Characteristics of reactivity meters . 11
7.1 General . 11
7.2 Type of detector and input signal . 11
7.3 Output signal . 11
7.4 Performances . 12
7.4.1 Accuracy . 12
7.4.2 Response time . 13
7.4.3 Verification . 13
8 Design and qualification . 13
9 Test methods . 14
9.1 General consideration on tests . 14
9.1.1 Consideration on accuracy . 14
9.1.2 Consideration on response time . 14
9.2 Devices to test reactivity meters . 14
9.2.1 Point reactor simulator . 14
9.2.2 Exponential signal generator . 15
9.3 Reactivity meter test methods (with simulator or signal generator) . 15
9.3.1 Accuracy . 15
9.3.2 Response time . 16
9.4 Reactivity meter test methods (on reactor) . 16
Annex A (informative) Uses of a reactivity meter on NPP . 17
A.1 Subcritical conditions – Subcritical approach . 17
A.2 Physical tests . 17
A.3 Permanent surveillance (full power) . 18
A.4 Safety . 18
Figure 1 – Schematic diagram of a typical reactivity meter . 11
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
Nuclear power plants - Instrumentation systems important to safety -
Characteristics and test methods of nuclear reactor reactivity meters
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 63374 has been prepared by subcommittee 45A: Instrumentation, control and electrical
power systems of nuclear facilities, of IEC technical committee 45: Nuclear instrumentation. It
is an International Standard.
The text of this International Standard is based on the following documents:
Draft Report on voting
45A/1611/FDIS 45A/1621/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn, or
• revised.
INTRODUCTION
a) Technical background, main issues and organization of the document
This document focuses on characteristics and test methods of nuclear reactor reactivity
meters. Reactivity is the fundamental parameter that instantaneously characterizes the
evolution of the power of a reactor. The measurement of reactivity in a nuclear power plant
is used to indicate the deviation of the effective neutron multiplication factor from unity. A
reactivity meter directly calculates the reactivity from a measurement of neutron flux of the
reactor by solving the kinetic equations of the point reactor model. It is intended that this
document be used by operators of nuclear power plants (NPPs), systems evaluators and
licensors.
b) Situation of this document in the structure of the IEC SC 45A standard series
IEC 63374 is a third level IEC/SC 45A document. For more details on the structure of the
IEC SC 45A standard series, see item d) of this Introduction.
c) Recommendations and limitations regarding the application of this document
To ensure that this document will continue to be relevant in future years, the emphasis has
been placed on issues of principle, rather than specific technologies.
d) Description of the structure of the IEC SC 45A standard series and relationships with
other IEC documents and other bodies' documents (IAEA, ISO)
The IEC SC 45A standard series comprises a consistent set of documents organised in a
hierarchy of four levels. The top-level documents of the IEC SC 45A standard series are
IEC 61513 and IEC 63046, covering respectively general requirements for instrumentation
and control (I&C) systems and general requirements for electrical power systems of NPPs.
IEC 61513 and IEC 63046 adopt an overall system life-cycle framework and constitute,
along with the relevant second-level standards, the nuclear implementation of the basic
safety series IEC 61508.
IEC 61513 and IEC 63046 refer directly to other IEC SC 45A standards for general
requirements for specific topics, such as categorization of functions and classification of
systems, qualification, separation, defence against common cause failure, control room design,
electromagnetic compatibility, human factors engineering, cybersecurity, software and
hardware aspects for programmable digital systems, coordination of safety and security
requirements and management of ageing.
At a third level, IEC SC 45A standards not directly referenced by IEC 61513 or by IEC 63046
are standards related to specific requirements for specific equipment, technical methods, or
activities. Usually, these documents refer to second-level documents for general requirements
and can be used on their own.
A fourth level extending the IEC SC 45A standard series corresponds to Technical Reports
which are not normative.
The IEC SC 45A standards series consistently implements and details the safety and security
principles and basic aspects provided in the relevant IAEA safety standards and in the relevant
documents of the IAEA nuclear security series (NSS). In particular this includes the IAEA
requirements SSR-2/1 , establishing safety requirements related to the design of nuclear power
plants (NPPs), the IAEA safety guide SSG-30 dealing with the safety classification of structures,
systems and components in NPPs, the IAEA safety guide SSG-39 dealing with the design of
instrumentation and control systems for NPPs, the IAEA safety guide SSG-34 dealing with the
design of electrical power systems for NPPs, the IAEA safety guide SSG-51 dealing with human
factors engineering in the design of NPPs and the implementing guide NSS42-G for computer
security at nuclear facilities. The safety and security terminology and definitions used by the
SC 45A standards are consistent with those used by the IAEA.
IEC 61513 and IEC 63046 refer to ISO 9001 as well as to IAEA GSR part 2 and IAEA GS-G-3.1
and IAEA GS-G-3.5 for topics related to quality assurance (QA).
At level 2, regarding nuclear security, IEC 62645 is the entry document for the IEC/SC 45A
security standards. It builds upon the valid high-level principles and main concepts of the
generic security standards, in particular ISO/IEC 27001 and ISO/IEC 27002; it adapts them and
completes them to fit the nuclear context and coordinates with the IEC 62443 series. At level 2,
IEC 60964 is the entry document for the IEC/SC 45A control rooms standards, IEC 63351 is the
entry document for the human factors engineering standards and IEC 62342 is the entry
document for the ageing management standards.
NOTE IEC TR 63400 provides a more comprehensive description of the overall structure of the IEC SC 45A
standards series and of its relationship with other standards bodies and standards.
1 Scope
This document specifies the characteristics and test methods for reactivity meters. Other
methods for measuring reactivity are not addressed in this document.
This document provides guidance for the design, production and operation of reactivity meters.
This document is applicable to various types of nuclear reactors that can be described by the
neutron kinetic point reactor model, such as pressurized water reactors (PWRs), boiling-water
reactors (BWRs) or fast breeder reactors (FBRs).
This document is applicable to all on-line measuring instruments that directly obtain reactivity
values by measuring the neutron flux. The subject relates to the reactor nuclear parameter
measurement domain.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 60515, Nuclear power plants - Instrumentation important to safety - Radiation detectors -
Characteristics and test methods
IEC 60880, Nuclear power plants - Instrumentation and control systems important to safety -
Software aspects for computer-based systems performing category A functions
IEC 62003, Nuclear power plants - Instrumentation and control important to safety -
Requirements for electromagnetic compatibility testing
IEC 61226, Nuclear power plants - Instrumentation, control and electrical power systems
important to safety - Categorization of functions and classification of systems
IEC 62138, Nuclear power plants - Instrumentation and control systems important to safety -
Software aspects for computer-based systems performing category B or C functions
IEC/IEEE 60780-323, Nuclear facilities - Electrical equipment important to safety - Qualification
IEC/IEEE 60980-344, Nuclear facilities - Equipment important to safety - Seismic qualification
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
• IEC Electropedia: available at https://www.electropedia.org/
• ISO Online browsing platform: available at https://www.iso.org/obp
3.1
correspondence table (reactivity versus time constant)
table giving the correspondence value between reactivity and reactor time constant
Note 1 to entry: The correspondence table (reactivity versus time constant) is also called the “Nordheim table”.
Note 2 to entry: When the reactivity of a reactor is constant and positive, the time constant stabilizes at a fixed
value. The corresponding reactivity is given by the correspondence table (reactivity versus time constant). The
reactor time constant is either the doubling time or the period. Doubling time is the time for the neutron flux to be
multiplied by two, with the other parameters assumed unchanged.
3.2
criticality
condition of a nuclear system having an effective neutron multiplication factor equal to unity
[SOURCE: IEC 60050-395:2014, 395-07-05, modified – Note 1 to entry has been deleted]
3.3
delayed neutron precursors
fission products which disintegrate by emitting a neutron
Note 1 to entry: To determine the neutron behaviour of the core of a nuclear reactor, the delayed neutron precursors
are distributed in several groups. Each group is characterized by its number (i), its disintegration time constant (λ ),
i
and its concentration (C ).
i
3.4
neutron generation time
mean time between the birth of a neutron from fission to produce one new neutron
Note 1 to entry: Neutron generation time and neutron lifetime are linked together by the following formula:
L = Lk/
g eff
Where
L is neutron generation time, the unit is (s)
g
L is neutron lifetime, the unit is (s)
k is the effective neutron multiplication factor
eff
3.5
neutron lifetime
mean time between the birth of a neutron from fission and its death (disappearance by
absorption or escape)
3.6
point reactor model
space-independent neutron kinetics equations in which neutron density and delayed neutron
precursors concentrations are only a function of time
3.7
point reactor simulator
instrument that generates signals reproducing those produced by a neutron detector located
close to the core of a nuclear reactor
Note 1 to entry: The time dependence evolution of the signals is determined by the point reactor model according
to the reactivity applied to the model.
3.8
reactivity
quantity such as
ρ 1−
k
eff
where
k is the effective neutron multiplication factor
eff
Note 1 to entry: The parameter ρ gives the deviation from the criticality of a nuclear chain reactor which is such
that positive values correspond to a supercritical state and negative values to a subcritical state.
ρ
Note 2 to entry: is a dimensionless parameter, but in practice it is expressed by using two types of units
depending on the engineering requirements:
−5
• pcm = 10
ρ
• dollar =
β
[SOURCE: IEC 60050-395-07-07:2014, modified – Note 2 to entry has been added]
3.9
reactivity meter
electronic assembly which, in association with one or more detectors, indicates the reactivity of
a nuclear reactor
[SOURCE: IEC 60050-395-07-41:2014, 395-07-41, modified – Note 1 to entry has been
removed]
3.10
reactor time constant
reactor period
time required for the neutron flux in a nuclear reactor to change by a factor e equal to 2,718…,
when the neutron flux is rising or falling exponentially
Note 1 to entry: Doubling time is the time for the physical power to be multiplied by two, with the other parameters
assumed unchanged.
[SOURCE: IEC 60050-395:2014, 395-07-04]
3.11
step response time
duration between the instant when the measurand (or quantity supplied) is subjected to a
specified abrupt change and the instant when the indication (or quantity supplied) reaches and
remains within specified limits of its final steady-state value
Note 1 to entry: This definition is the one conventionally used for measuring instruments.
[SOURCE: IEC 60050-311:2001, 311-06-04]
=
4 Abbreviated terms
cps counts per second
EMC electro-magnetic compatibility
EMI electromagnetic interference
FBR fast breeder reactor
HWR heavy water reactor
LWR light water reactor
NPP nuclear power plant
pcm per cent mille
PWR pressurized water reactor
RFI radio frequency interference
5 Neutron kinetics and point reactor model
5.1 General
The evolution of the neutron population and the power in the core of a reactor is well described
by the point reactor model with several groups of delayed neutrons. The number of delayed
neutron groups used in the point reactor model varies according to the type of reactor and the
required accuracy of the reactivity measurement. Generally, six groups are used for LWRs and
FBRs. In some cases (e.g. HWRs), it is recommended to use more groups to take into account
delayed photoneutrons.
5.2 Point reactor model
The relationship between neutron density and reactivity is determined by the following neutron
kinetic equations in the point reactor model:
M
dn ρβ−
= n++λC S
(1)
∑ ii
dt Lg
i=1
dC β
ii
n−λC (2)
ii
dt Lg
where
-3
n neutron density, the unit is (cm );
ρ reactivity, dimensionless number;
Lg average neutron generation time, the unit is (s);
β total delayed neutron fraction;
β delayed neutron fraction of group i;
i
-3
C delayed neutron precursor concentration of group i, the unit is (cm );
i
-1
λ delayed neutron precursor decay-constant of group i, the unit is (s );
i
i group number of delayed neutron emitter;
M number of groups of delayed neutrons;
=
-3 -1
S source term, the unit is (cm × s );
t time, the unit is (s).
NOTE kinetics equations use neutron density but signals from neutron detectors are proportional to neutron flux
and neutron flux is proportional to neutron density. Practically, kinetics equations are written by using the signal
value (pulse rate or current) instead of neutron density n. Coefficients are adapted accordingly.
5.3 Reactivity calculation based on point reactor model
The use of a signal proportional to the neutron density makes it possible to directly calculate
the reactivity by inverting kinetics equations. The formula giving the reactivity is:
M
Lg dC dn
i
ρS()+−
(3)
∑
n dt dt
i=1
In the case where the initial state and the source term are known, equation (3) gives a numerical
solution of the reactivity based on the change in the sample value of the neutron flux signal.
NOTE Reactivity meters for different purposes might utilize simplified solutions of the inverted kinetics equations.
For example, some might utilize the Prompt Jump Approximation. At a sufficient level of neutron flux, term S could
be negligible. These types of simplifications are common for reactivity meters utilised for category C functions as
mentioned in Annex A, Clause A.2.
5.4 Coefficients of the point reactor model
The coefficients of the model (β , λ , L etc.) shall be determined from the calculation by using
i i g
the exact composition of the fuel assemblies and their burnup.
The calculated coefficients are important with reactors operated with thermal neutrons: the fuel
composition and the physical coefficients change through the cycle length due to fuel burnup.
Therefore, for permanent use of the reactivity meter, the model shall be validated for the
changes in fuel composition through the cycle length.
In the case of reactors operated with fast neutrons, the modification of the coefficients during a
cycle length is less important, because the microscopic cross-section is less varying with fast
neutrons.
6 Types of reactivity meters
Reactivity meters operate with neutron detectors which provide an input signal proportional to
the neutron flux. Reactivity meters may be designed with either analogue or digital technologies.
With the evolution of technologies, the current trend is the widespread use of digital reactivity
meters.
A reactivity meter comprises two main parts:
• The nuclear measurement part (amplification and conditioning) includes neutron detectors,
cables, conditioning electronics which deliver an electrical signal proportional to the neutron
flux.
• The reactivity calculation part processes the signal from the nuclear measurement part.
Analogue reactivity meters comprise one or several circuits networks based on operational
amplifiers, resistors and capacitors. Digital reactivity meters include processing units which
allow greater ranges of measurement, more accurate results and more flexible operation.
They also enable additional functions to be implemented (such as data recording and
complex display graphics).
Figure 1 illustrates a typical schematic diagram of a reactivity meter.
=
Figure 1 – Schematic diagram of a typical reactivity meter
7 Characteristics of reactivity meters
7.1 General
The characteristics of a reactivity meter depend on the type of detector used and the range of
the input signal compatible with the technology used to calculate the reactivity.
7.2 Type of detector and input signal
Two types of detectors are typically used to provide an input signal to the reactivity meter:
• Pulse mode detector: proportional counter or fission counter.
• The counting rate of the pulses is proportional to the neutron flux.
• Current mode detector: compensated or non-compensated ionization chamber or fission
chamber. The current induced by neutrons (without the signal due to gamma) is proportional
to the neutron flux.
The input signal range is determined by the type of detector and the technique used to process
and condition the signal from the detector.
The input total signal range, pulse count rate (cps) or current (A), acceptable by the reactivity
meter shall be specified.
If the reactivity meter is required to cover a wide range of neutron flux, it should be designed to
provide several measuring ranges. These ranges should overlap so that an initial flux starting
point (for a reactivity transient) is not unnecessarily limited. The number and limits of each
range shall be specified and justified for the type of reactor on which the reactivity meter is to
be used. To meet the above requirements, a reactivity meter should be implemented with an
automatic switching range system providing a smooth and undisturbed operation. Otherwise,
the correct range setting should be made according to the measurement requirements to ensure
the continuity of the test process.
7.3 Output signal
The reactivity is typically displayed as a digital value with its appropriate unit or an analogue
signal.
The unit pcm can be used to measure reactivity as follows:
(4)
ρk=(1−×1/ ) 10
eff
where
ρ unit is pcm
Alternatively, the practice in some countries is to normalize reactivity to β. In such cases the
unit is (dollar, cent) expressed by the formula:
−5
ρpcm×10
ρ$= (5)
β
where
ρ reactivity (dollar)
$
ρ reactivity (pcm)
pcm
β total delayed neutron fraction
Depending on the sign and the magnitude of the reactivity, an analogue display should be
selected according to the following principles:
• Negative reactivity (subcritical conditions): e.g. during subcritical approach, the reactivity is
measured over a wide range. Analogue display should be either logarithmic or linear
(preferable for small values) with various possibilities of ranges.
• Around criticality (reactor operation): small positive or negative reactivity, analogue display
should be linear.
The number and types (logarithm or linearity) of measuring ranges of reactivity shall be
specified with their respective limits.
When the reactivity is calculated by digital techniques the result shall be displayed or recorded
with its units: pcm, dollar, cent, depending on the specifications.
7.4 Performances
7.4.1 Accuracy
The accuracy is specified by the relative error of the reactivity, which is determined by the ratio
of the deviation between the measured reactivity value ρ and the demanded value ρ . The
mes d
formula is the following:
ρρ−
mes d
E(%) 100×
(6)
ρ
d
=
where
E is the relative error of reactivity;
ρ is the reactivity value measured by the reactivity meter;
mes
ρ is the correspondence reactivity value in Nordheim table versus the doubling time of
d
input test signal.
The causes of errors on the reactivity measurement are mainly due to the following:
• Electronic drift of neutron flux measurement
• Discrepancy between the physical parameters implemented in the reactivity meter and those
associated to the input signal (reactor or simulator)
The correct operation of the reactivity meter is validated during the design (software) and during
periodic tests with signal generators.
The error of reactivity is obtained by tests with simulators or with a reactor after validation of
the physical parameters as stated in 9.3 and 9.4. The accuracy of reactivity meters may vary
depending on the type of nuclear reactor, meter type, measurement output mode, and amount
of reactivity change, etc. Typically, for reactivity measurements on a PWR with reactivity values
greater than 10 pcm, the error is below 4 %.
For small reactivity (< 10 pcm) the relative error is not significant, and it is more realistic to use
the absolute error: E (pcm) = ρ − ρ . The error should be specified in the design
mes d
documentation.
7.4.2 Response time
The required response time of reactivity meters is indicated as step response time, which shall
be specified in the requirements documentation. The response time is generally very dependent
on the type of filtering used in the design of the nuclear measurement part (see Figure 1).
Typically, the response time is less than 2 seconds.
NOTE Reactivity meters used for category A and category B functions as noted in Clauses A.3 and A.4 are the
ones that might require a specific response time. Those utilized for category C functions such as for physical tests
as noted in Clause A.2 are more likely to need more flexibility in response time. These types of devices are more
interested in high accuracy over quick response and the user might need to increase filtering parameters during the
time of testing based on signal noise to get higher accuracy out of noisier signals at very low power which would
increase the response time lag. Faster response times are not of much interest versus accuracy with these types of
instruments and likely will not have a need for an exact response time requirement.
7.4.3 Verification
Reactivity meters based on inversion of kinetics equations are not metrologically calibrated;
they are verified by using a simulator or a signal generator as it is explained in 9.2, 9.3 and 9.4.
8 Design and qualification
The use of the function to calculate the reactivity depends on engineering considerations either
to help operators during divergence, to perform the physical tests or to perform a protection
function when required.
Consequently, the reactivity meter function shall be identified as category A, B, or C in
accordance with IEC 61226.
According to its function category and safety classification, the hardware design of reactivity
meter shall conform with IEC 60987, and the software development shall conform with
IEC 60880 or IEC 62138. An equipment implemented with a reactivity meter function shall be
qualified according to IEC 60780/IEEE 323 and IEC 60980/IEEE 344.
Neutron detectors shall conform with IEC 60515. The reactivity meter function may be
incorporated into an I&C system (for example nuclear instrumentation system) or implemented
into a separate instrument. The design criteria (e.g. isolation, redundancy, etc.) and the
qualification tests shall meet the safety classification and the requirements of the system in
which the reactivity meter is installed.
Regarding EMI/RFI and EMC, an equipment implemented with a reactivity meter function shall
be qualified according to IEC 62003.
9 Test methods
9.1 General consideration on tests
9.1.1 Consideration on accuracy
A reactivity meter calculates the reactivity based on the point reactor model which uses
parameters given by 5.2.
All the parameters related to the composition of the fuel and reactor conditions (refer to 5.2)
are well estimated but do not confirm the actual core exactly. Consequently, the reactivity
measured on a reactor is not a metrological reference to test the accuracy of a reactivity meter.
The measurement of accuracy of a reactivity meter is a metrological operation and shall be
performed with signal generators reflecting the same model as the reactivity meter. Two types
of generators can be used: either a point reactor simulator or an exponential signal generator
associated with a correspondence table (reactivity versus time constant).
9.1.2 Consideration on response time
The kinetic behaviour of a core, when the reactivity change is small (typically < 10 pcm), shows
a very slow evolution which corresponds to a normal and safe operation without the need for
an estimate of the response time.
The response time is significant for larger steps of reactivity (above 10 pcm).
For reactivity measurements on a reactor core, reactivity changes over 100 pcm shall be
undertaken carefully to avoid the automatic actuation of a reactor trip.
The calculation of response time is very dependent on the signal level. The time to deliver a
signal representing the neutron flux before entering the reactivity meter may be long (time for
low counting rate or time for low current measurement) and may affect the measurement of the
response time of the reactivity meter.
The measurement of the response time of the reactivity meter may be performed under
conditions in which the measurement time of the neutron flux by the nuclear measurement part
is negligible (typically < 10 ms).
9.2 Devices to test reactivity meters
9.2.1 Point reactor simulator
A point reactor simulator is a device based on the point reactor model (see 5.2) that delivers
an electric signal (pulses or current) representing accurately the evolution of the neutron flux
of a reactor core consistent with the reactivity demanded to its input.
A reactivity meter receiving this signal delivers shortly a reactivity measurement identical to the
demanded reactivity if all its internal physical parameters are identical to those of the reactor
point simulator. By using a point reactor simulator it is possible to instantly verify the accuracy
of the reactivity meters (see 7.4.1). The main advantage of the point reactor simulator is the
possibility to cover all the reactivity stages of a reactor core including subcriticality.
9.2.2 Exponential signal generator
When the reactivity is constant and positive, after a few minutes the neutron flux evolves in a
purely exponential manner. By using an exponential signal generator with a time constant given
by the correspondence table, the evolution of the neutron flux is consistent with that of a reactor
core having the same reactivity. The reactivity meter receiving this signal gives the same
reactivity.
The signal generator (pulse frequency or current) should have verified characteristics. With an
exponential signal generator, it is possible to test only the stages with positive and stable
reactivity.
NOTE A digital reactivity meter might be equipped with an integrated exponential generator to check the
performance.
9.3 Reactivity meter test methods (with simulator or signal generator)
9.3.1 Accuracy
9.3.1.1 General
The accuracy of a reactivity meter shall be measured either with a point reactor simulator (see
9.2.1) or an exponential signal generator (see 9.2.2). For the test of accuracy, the reactivity
meter shall be configured with a source term at zero. The reason is that the correspondence
table is established with a source term equal to zero. The use of this table is valid only at a
significant level of neutron flux when the source term is negligible.
The source term is specifically needed for large negative reactivity and its effect is negligible
when approaching criticality. With large negative reactivity, it is not expected to measure an
accurate value.
The reactivity relative error may be measured by starting at a significant level of power and
reactivity between 10 pcm and 100 pcm corresponding to the practical values observed on sites.
9.3.1.2 Accuracy with a point reactor simulator
The reactivity meter is connected to the point reactor simulator. The simulator generates a
signal representing critical conditions (reactivity is zero) with a constant signal representing a
significant and stable level of power.
After stabilization, reactivity equals zero. A reactivity step is applied to the simulator, typically
between 10 pcm and 100 pcm. The value of the reactivity ρ measured by the reactivity meter
mes
stabilizes and is recorded.
The relative error is obtained by applying the Formula (6) given in 7.4.1.
As the simulator and the reactivity meter use the same model with the same physical
parameters, the relative error above 10 pcm is typically less than 0,5 %.
Below 10 pcm, the absolute error is more significant than the relative error.
9.3.1.3 Accuracy with an exponential signal generator
Firstly, the signal generator connected to the reactivity meter produces a constant signal and
the measured reactivity stabilizes at zero. Then,
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...