IEC 60628:1985
(Main)Gassing of insulating liquids under electrical stress and ionization
Gassing of insulating liquids under electrical stress and ionization
Describes two procedures each using different apparatus to measure the tendency of insulating liquids to evolve or absorb gas when subjected to electrical stress. The contents of the corrigendum of October 1986 have been included in this copy.
Gassing des isolants liquides sous contrainte électrique et ionisation
Décrit deux méthodes, utilisant chacune des appareillages différents pour évaluer la tendance des isolants liquides à émettre ou absorber des gaz lorsqu'ils sont soumis à une contrainte électrique. Le contenu du corrigendum d'octobre 1986 a été pris en considération dans cet exemplaire.
General Information
Standards Content (Sample)
Publication 628 de la CEI IEC Publication 628
(Deuxième édition - 1985) (Second edition - 1985)
Gassing des isolants liquides sous Gassing of insulating liquids under
contrainte électrique et ionisation electrical stress and ionization
CORRIGENDUM 1
Correction du texte anglais seulement.
Correction of the English text only.
Page 17
Page 17
au lieu de: instead of:
13.1.1 Glass cell precision b
...
This May Also Interest You
IEC 60599:2022 describes how the concentrations of dissolved gases or free gases can be interpreted to diagnose the condition of oil-filled electrical equipment in service and suggest future action. This document is applicable to electrical equipment filled with mineral insulating oil and insulated with cellulosic paper or pressboard-based solid insulation. Information about specific types of equipment such as transformers (power, instrument, industrial, railways, distribution), reactors, bushings, switchgear and oil-filled cables is given only as an indication in the application notes. This document can be applied, but only with caution, to other liquid-solid insulating systems. In any case, the indications obtained are given only as guidance with resulting action undertaken only with proper engineering judgment.
- Standard122 pagesEnglish languagesale 15% off
- Standard80 pagesEnglish and French languagesale 15% off
IEC 60599:2015 describes how the concentrations of dissolved gases or free gases may be interpreted to diagnose the condition of oil-filled electrical equipment in service and suggest future action. This standard is applicable to electrical equipment filled with mineral insulating oil and insulated with cellulosic paper or pressboard-based solid insulation. Information about specific types of equipment such as transformers (power, instrument, industrial, railways, distribution), reactors, bushings, switchgear and oil-filled cables is given only as an indication in the application notes. This standard may be applied, but only with caution, to other liquid-solid insulating systems. This third edition cancels and replaces the second edition published in 1999 and Amendment 1:2007. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) revision of 5.5, 6.1, 7, 8, 9, 10, A.2.6, A.3, A.7;
b) addition of new sub-clause 4.3;
c) expansion of the Bibliography;
d) revision of Figure 1;
e) addition of Figure B.4.
- Standard119 pagesEnglish languagesale 15% off
- Standard78 pagesEnglish and French languagesale 15% off
IEC 60666:2010 provides methods concerning the detection and determination of specified additives in unused and used mineral insulating oils. The detection methods may be applied to assess whether or not a mineral insulating oil contains an additive as specified by the supplier. The determination methods are used for the quantitative determination of additives known to be present or previously detected by the appropriate detection method. The main changes with respect to the previous edition are listed below:
- a change in the title from "Detection and determination of specified anti-oxidant additives in insulating oils";
- new Annexes B and C which provide methods for the determination of two additives different from the anti-oxidants.
- Standard64 pagesEnglish and French languagesale 15% off
Describes the sampling procedures and methods for the determination of particle concentration and size distribution. Three methods are specified. One uses an automatic particle size analyser, working on the light interruption principle. The other two use an optical microscope, in either the transmitted light or incident light mode, to count particles collected on the surface of a membrane filter. The optical microscope methods are described in ISO 4407. All three methods are applicable to both used and unused insulating liquids. Annex A contains an alternative sampling procedure using a syringe and Annex B reports a reference for the calibration of automatic particle counters. The significant technical changes with respect to the previous edition are as follows: - new calibration procedures for automated laser particle; - three figures contamination code; - new procedure of sample pre-treatment when automated laser counter method are used.
- Standard37 pagesEnglish and French languagesale 15% off
Describes how the concentrations of dissolved gases or free gases may be interpreted to diagnose the condition of oil-filled electrical equipment in service and suggests future action. Applicable to electrical equipment filled with mineral insulating oil and insulated with cellulosic paper or pressboard-based solid insulation. Information about specific types of equipment such as transformers (power, instrument, industrial, railways, distribution), reactors, bushings, switchgear and oil-filled cables is given only as an indication in the application notes. May be applied only with caution to other liquid-solid insulating systems. In any case, the indications obtained should be viewed only as guidance and any resulting action should be undertaken only with proper engineering judgement.
- Standard69 pagesEnglish and French languagesale 15% off
- Standard69 pagesEnglish and French languagesale 15% off
- Standard8 pagesEnglish and French languagesale 15% off
Deals with the techniques for sampling free gases from gas-collecting relays and for sampling oil from oil-filled equipment such as power and instrument transformers, reactors, bushings, oil-filled cables and oil-filled tank-type capacitors. Three methods of sampling free gases and three methods of sampling oil are described; the choice between the methods often depends on the apparatus available and on the quantity of oil needed for analysis. Before analysing the gases dissolved in oil, they must first be extracted from the oil. Three basic methods are described, one using extraction by vacuum (Toepler and partial degassing), another by displacement of the dissolved gases by bubbling the carrier gas through the oil sample (stripping), and the last one by partition of gases between the oil sample and a small volume of the carrier gas (head space). The gases are analysed quantitatively after extraction by gas chromatography; a method of analysis is described. Free gases from gas-collecting relays are analysed without preliminary treatment. The preferred method for assuring the performance of the gas extraction and analysis equipment, considered together as a single system, is to degas samples of oil prepared in the laboratory and containing known concentrations of gases ("gas-in-oil standards") and quantitatively analyse the gases extracted. Two methods of preparing gas-in-oil standards are described. For daily calibration checks of the chromatograph, it is convenient to use a standard gas mixture containing a suitable known amount of each of the gas components to be in a similar ratio to the commons ratios of the gases extracted from transformer oils. The techniques described take account, on the one hand, of the problems peculiar to analyses associated with acceptance testing in the factory, where gas contents of oil are generally very low and, on the other hand, of the problems imposed by monitoring equipment in the field, where transport of samples may be by un-pressurized air freight and where considerable differences in ambient temperature may exist between the plant and the examining laboratory. The main changes with respect to the previous edition are listed below. Since the publication of the second edition of this standard, a number of new gas extraction methods have been developed and are commercially available, such as mercury-free versions of the standard Toepler and partial degassing methods, which are referenced to in Annex C of the present edition. The head space method, based on a new concept for the extraction of gases from oil is introduced as a full method in this third edition, and reference is made to a simplified version of it also in Annex C (shake test method). More sensitive chromatographic techniques have also been developed since the last edition, and are presented in this third edition.
- Standard64 pagesEnglish languagesale 15% off
- Standard64 pagesFrench languagesale 15% off
- Standard127 pagesEnglish and French languagesale 15% off
- Standard3 pagesEnglish and French languagesale 15% off
Describes methods for the determination of the dielectric dissipation factor, relative permittivity and d.c. resistivity of any insulating liquid material at the test temperature. The methods are primarily intended for making reference tests on unused liquids. They can also be applied to liquids in service in transformers, cables and other electrical apparatus. However the method is applicable to a single phase liquid only. When it is desired to make routine determinations, simplified procedures, as described in Annex C, may be adopted. With insulating liquids other than hydrocarbons, alternative cleaning procedures may be required. The main changes from the previous edition deal with the preferred measurement method.
- Standard53 pagesEnglish and French languagesale 15% off
Specifies a procedure for the determination of the kinematic viscosity of mineral insulating oils, both transparent and opaque, at very low temperatures, after a cold soaking period of at least 20 h, by measuring the time for a volume of liquid to flow under gravity throught a calibrated glass capillary viscometer. Applies at all temperatures to both Newtonian and non-Newtonian liquids having viscosities of up to 20 000 mm2/s.
- Standard21 pagesEnglish and French languagesale 15% off
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.