EN 60958:1990/A2:1995
(Amendment)Digital audio interface
- BACK
- 10-Dec-1995
- 31-Jul-1996
- 17.140.50
- CLC/TC 100X
Digital audio interface
EN following parallel vote * Superseded by EN 60958-1:2000
Digitalton-Schnittstelle
Interface audionumérique
Digital audio interface (IEC 60958/A2:1995)
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-april-1999
Digital audio interface (IEC 60958/A2:1995)
Digital audio interface
Digitalton-Schnittstelle
Interface audionumérique
Ta slovenski standard je istoveten z: EN 60958:1990/A2:1995
ICS:
33.160.30 Avdio sistemi Audio systems
35.200 Vmesniška in povezovalna Interface and interconnection
oprema equipment
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
...
This May Also Interest You
Applies to the microphone part and earphone part of handsets, headsets or earsets for speech communications, and also to the microphone units and earphone units of built-in handsets, headsets or earsets. Establishes definitions relating to these electroacoustic transducers, standardizes the characteristics to be specified and the relevant methods of measurement.
- Standard32 pagesEnglish languagesale 10% offe-Library read for×1 day
- 05-Jun-2002
- 30-Apr-2005
- 17.140.50
- 33.160.50
- CLC/TC 100X
Applies to sounders which are treated as entirely passive electroacoustic transducer elements. Piezoelectric diaphragms, which are the principal components of piezoelectric sounders, are also included. Standardize the definitions relating to these electroacoustic transducers, lists characteristics to be specified and the relevant methods of measurement.
- Standard22 pagesEnglish languagesale 10% offe-Library read for×1 day
- 10-Jan-1996
- 31-Aug-1996
- 17.140.50
- CLC/TC 100X
IEC 61847:2025 specifies: – the essential non-thermal output characteristics of ultrasonic surgical units; – methods of measurement of these output characteristics; – those characteristics to be declared by the manufacturers of such equipment. This document is applicable to equipment which meets the criteria of a), b) and c) below: a) ultrasonic surgical systems operating in the frequency range 20 kHz to 120 kHz; and b) ultrasonic surgical systems whose use is the fragmentation, emulsification, debridement, or cutting of human tissue, whether or not those effects are delivered in conjunction with tissue removal or coagulation; and c) ultrasonic surgical systems in which an acoustic wave is conducted by means of a specifically designed wave guide to deliver energy to the surgical site. This document is not applicable to: – lithotripsy equipment which uses extracorporeally induced pressure pulses, focused through liquid conducting media and the soft tissues of the body; – surgical systems used as part of the therapeutic process (hyperthermia systems); – surgical systems whose mechanism of action is through frictional heat generated by tissue in contact with the wave guide, e.g. clamp coagulators or clamping vibrational cutters; – surgical systems whose mechanism of action is through focused ultrasound for either thermal degradation (high intensity focused ultrasound – HIFU or HITU) or cavitation erosion (Histotripsy) of tissue remote from the ultrasound transducer; – surgical systems whose mechanism of action is through erosion of hard tissues in contact with the applicator tip, e.g. bone cutting or drilling. This document does not deal with the effectiveness or safety of ultrasonic surgical systems. This document does not deal with airborne noise from the systems, which can affect operators and patients. IEC 61847:2025 cancels and replaces the first edition published in 1998. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) The upper frequency covered by this document has been raised from 60 kHz to 120 kHz. b) The hydrophone method of measuring ultrasound power is now normative. Because of difficulties in using the calorimetry method of measuring ultrasound power, it is no longer the primary approach. c) It is recognised that some systems can have more than one mode of vibration under user control, and the measurement techniques and declarations have been updated to address this. d) The high-frequency component, which relates to cavitation developed at the applicator tip and the vibration amplitude at which cavitation occurs is addressed. e) Specific requirements for measurement at excursion levels where no cavitation is present, and extrapolation to maximum excursion level(s) are described. f) Guidance is provided to adapt the methodology described to more complex designs and vibration patterns, excursion directions, and their output characteristics. g) Guidance is provided with respect to measurement tank arrangements for different types of systems. h) The list of ultrasound methods and systems not covered by this document was extended to incorporate recent developments. i) Definitions for cavitation related terms were added. j) Requirements for the measurement of directivity characteristics of the applicator tip were changed. k) Annex A was modified and Figure A.1 wa
- Standard38 pagesEnglish languagesale 10% offe-Library read for×1 day
- Amendment6 pagesEnglish languagesale 10% offe-Library read for×1 day
IEC 62127-2:2025 specifies: - absolute hydrophone calibration methods; - relative (comparative) hydrophone calibration methods. Recommendations and references to accepted literature are made for the various relative and absolute calibration methods in the frequency range covered by this document. This document is applicable to - hydrophones used for measurements made in water and in the ultrasonic frequency range 50 kHz to 100 MHz; - hydrophones employing piezoelectric sensor elements, designed to measure the pulsed wave and continuous wave ultrasonic fields generated by ultrasonic equipment; - hydrophones with or without a hydrophone pre-amplifier. IEC 62127-2:2025 cancels and replaces the first edition published in 2007, Amendment 1:2013 and Amendment 2:2017. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) the upper frequency limit of 40 MHz has been removed; b) hydrophone sensitivity definitions have been changed to recognize sensitivities as complex-valued quantities; c) directional response measurement and effective size determination procedures have been updated in 12.5.1 to align with recent changes in IEC 62127-3; d) Annex F has been amended to comprise a calibration technique for high-frequency complex-valued calibration; e) the reciprocity method description in Annex K was extended to also comprise focusing transducers.
- Standard117 pagesEnglish languagesale 10% offe-Library read for×1 day
IEC 60601-2-37:2024 applies to the BASIC SAFETY and ESSENTIAL PERFORMANCE of ULTRASONIC DIAGNOSTIC EQUIPMENT as defined in 201.3.217, hereinafter referred to as ME EQUIPMENT. If a clause or subclause is specifically intended to be applicable to ME EQUIPMENT only, or to ME SYSTEMS only, the title and content of that clause or subclause will say so. If that is not the case, the clause or subclause applies both to ME EQUIPMENT and to ME SYSTEMS, as relevant. HAZARDS inherent in the intended physiological function of ME EQUIPMENT or ME SYSTEMS within the scope of this document are not covered by specific requirements in this document except in 201.7.2.13. This document does not cover ultrasonic therapeutic equipment. Equipment used for the imaging or diagnosis of body structures by ultrasound in conjunction with other medical procedures is covered. IEC 60601-2-37:2024 cancels and replaces the second edition published in 2007 and Amendment 1:2015. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) technical and editorial changes resulting from the amended general standard IEC 60601 1:2005, IEC 60601-1:2005/AMD1:2012 and IEC 60601-1:2005/AMD2:2020 and its collateral standards IEC 60601-1-xx, b) technical and editorial changes as a result of maintenance to normative references; c) technical and editorial changes resulting from relevant developments in TC 87 Ultrasonics standards. In particular, Clause 201.11 about protection against excessive temperatures and other hazards has been fully revised.
- Standard63 pagesEnglish languagesale 10% offe-Library read for×1 day
IEC 63412-1:2024 specifies quantities and parameters which it is essential to provide to the user of shear-wave elastography systems, many in the image headers. This document is applicable to medical-diagnostic, ultrasonic shear-wave elastography systems, exciting (internally or externally) shear waves and tracking their propagation within biological tissue.
- Standard22 pagesEnglish languagesale 10% offe-Library read for×1 day
IEC 60118-0:2022 gives recommendations for the measurement of the performance characteristics of air conduction hearing aids measured with an acoustic coupler or occluded ear simulator. This document is applicable to the measurement and evaluation of the electroacoustical characteristics of hearing aids, for example for type testing and manufacturer data sheets. This document is also applicable for the measurement of the performance characteristics of hearing aids for production, supply and delivery quality-assurance purposes. The measurement results obtained by the methods specified in this document will express the performance under conditions of the measurement and can deviate substantially from the performance of the hearing aid under actual conditions of use. This document primarily uses an acoustic coupler according to IEC 60318-5 which is only intended for loading a hearing aid with specified acoustic impedance and is not intended to reproduce the sound pressure in a person's ear. For measurements reflecting the output level in the normal human ear the occluded ear simulator according to IEC 60318-4 can be used. For extended high-frequency measurements and for deep insert hearing aids, the acoustic coupler according to IEC 60318-8 can be used. This document also covers measurement of hearing aids with non-acoustic inputs, such as wireless, inductive or electrical input. This document does not cover the measurement of hearing aids for simulated in situ working conditions, for which IEC 60118-8 can be applied. This document does not cover the measurement of hearing aids under typical user settings and using a speech-like signal, for which IEC 60118-15 can be applied. IEC 60118-0:2022 merges and updates the methods previously described in IEC 60118-0:2015 and IEC 60118-7:2005. It cancels and replaces the third edition of IEC 60118-0 published in 2015. This edition constitutes a technical revision. Measurements for quality control as described in IEC 60118-7:2005 can be found in Clause 10 of this document. This edition includes the following significant technical changes with respect to previous editions: a) the default use of an acoustic coupler according to IEC 60318-5, b) addition of the optional use of an occluded ear simulator according to IEC 60318-4, c) addition of the optional use of an acoustic coupler according to IEC 60318-8 (new standard based on IEC TS 62886) when information about the response above 8 kHz is needed, or the optional use of the acoustic coupler according to IEC 60318-8 for deep insert hearing aids, d) the addition of measurements of the performance of hearing aids for production, supply and delivery quality assurance purposes, e) corrected and updated measurement configuration and methods, adding the use of a sequential measurement as preferred configuration, f) updated and expanded measurement procedures for the non-acoustic inputs of the hearing aid.
- Standard77 pagesEnglish languagesale 10% offe-Library read for×1 day
- 09-May-2024
- 17.140.50
- 2017/745
- M/575
- M/575 AMD 2
- CLC/SR 29
IEC 63305:2024 specifies methods and procedures for calibration of vector receivers in the frequency range 5 Hz to 10 kHz, which are applicable to vector receivers based on the two different principles. In addition, it describes an absolute method of inertial vector receiver calibration in air using optical interferometry. Usually, acoustic wave vector receivers are designed and constructed based on one of two principles. One is the sound pressure difference (gradient) principle. When measuring with this sensor, the vector receiver is rigidly fixed on a mount and supported in water. The other is the co-vibrating (inertial) principle. When measuring with this sensor, the vector receiver is suspended on a mount and supported in water in a non-rigid manner, which allows the vector receiver co-vibrate in the same direction as the sound particle in the sound wave field. Many methods have been used to calibrate vector receivers, such as free-field calibration, calibration in standing wave tube and calibration in a travelling wave tube.
- Standard65 pagesEnglish languagesale 10% offe-Library read for×1 day
IEC 62127-3:2022 is available as IEC 62127-3:2022 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 62127-3:2022 specifies relevant hydrophone characteristics. This document is applicable to: - hydrophones employing piezoelectric sensor elements, designed to measure the pulsed and continuous wave ultrasonic fields generated by ultrasonic equipment; - hydrophones used for measurements made in water; - hydrophones with or without an associated pre-amplifier. IEC 62127-3:2022 cancels and replaces the first edition published in 2007 and Amendment 1:2013. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition. a) The upper frequency limit of 40 MHz has been removed. b) Hydrophone sensitivity definitions have been changed to recognize sensitivities as complex-valued quantities. c) Procedures to determine the effective hydrophone size have been changed according to the rationale outlined in Annex B. d) Requirements on the frequencies for which the effective hydrophone size shall be provided have been changed to achieve practicality for increased frequency bands. e) The new Annex B and Annex C have been added. f) Annex A has been updated to reflect the changes of the normative parts.
- Standard34 pagesEnglish languagesale 10% offe-Library read for×1 day
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.